ATMOSPHERE PROTECTION IN CASE OF EMERGENCY DURING TRANSPORTATION OF DANGEROUS CARGO
DOI:
https://doi.org/10.15802/stp2016/60953Keywords:
train accidents, air pollution, pollutant neutralization, numerical simulationAbstract
Purpose. The paper highlights the development of numerical models for prediction of atmospheric pollution in case of burning of the solid rocket propellant in a railway car, situated near the building on railway territory. These models can be used in predicting the effectiveness of neutralization upon the atmosphere protection for this type of accidents. Methodology.To solve this problem the numerical models based on the use of Navier-Stokes equations, to determine the velocity field of the wind flow near cars and buildings, and contaminants-transfer equations in the atmosphere were developed. For the numerical integration of pollutant transport equation was used implicit «change – triangle» difference scheme. When constructing a difference scheme physical and geometric cleavage of the transfer equation is carried out in four steps. Unknown value of pollutant concentration at each step of cleavage is determined by the explicit scheme – the method of «point-to-point computation». For the numerical integration of the Navier-Stokes equations are used implicit difference schemes. When carrying out computing experiment also takes into account: the velocity profile of wind flow; interaction between the building and the wind flow and flame jet of solid rocket propellant; the presence of a railroad car; inside which there is a source of pollution; instability of pollutant emissions. On the basis of constructed numerical models was performed the computer experiment for assessing the level of air pollution at dangerous cargo rail transportation in case of emergency at railway territory.The application calculations for the timely combustion products neutralization of solid rocket propellant were carried out. Findings. The numerical models that let promptly calculate air contamination in case of emergency during solid rocket propellant transportation, as well as calculate the rational parameters of pollutant neutralization process were developed by the researcher. These models can be used for routine calculations of various accident scenarios simulation. Originality. Numerical models were developed; they take into account significant factors, influencing the pollutant dispersion process in the atmosphere. On their base a pollutant neutralization method was offered in emergency situations on the railway transport. Practical value.Efficient numerical models, so called «diagnostic models» were considered for the rapid calculation of the air pollution level and air protection technology in emergency situations, in particular, in the case of railway transportation the solid rocket propellant.
References
Belyaev N.N., Gunko Ye.Yu., Mashikhina P.B. Matematicheskoye modelirovaniye v zadachakh ekologicheskoy bezopasnosti i monitoringa chrezvychaynykh situatsiy [Mathematical modeling in problems of environmental safety and monitoring emergencies]. Dnepropetrovsk, Aktsent PP Publ., 2013, 159 p.
Belyaev N.N., Berlov A.V. Prognozirovaniye zagryazneniya prizemnogo sloya atmosfery pri gorenii tverdogo raketnogo topliva v khranilishche [Prediction of pollution in the atmospheric surface layer during combustion of solid rocket fuel in storage]. Zbirnyk naukovykh prats NHU [Proc of NMU]. Dnipropetrovsk, Natsionalnyi Hirnychyi Universytet Publ., 2013, no. 42, pp. 160-167
Belyaev N.N., Berlov A.V., Shevchenko A.V. Modelirovaniye avariynogo zagryazneniya atmosfery pri chrezvychaynoy situatsii v khranilishche tverdogo raketnogo topliva [Simulation of the accidental pollution after the emergency in to the storage of rocket solid propellant]. Nauka ta prohres transport – Science and Transport Progress, 2014, no. 5 (53), pp. 29-38. doi: 10.15802/stp2014/29973.
Berlov A.V. Raschet zagryazneniya prizemnogo sloya atmosfery pri gorenii tverdogo raketnogo topliva [Calculation of the pollution of the ground atmospheric layer during combustion of solid rocket fuel]. Naukovyi visnyk budivnytstva: zbirnyk naukovykh prats [Proc. of «Scientific Bulletin of construction»], 2014, no. 1 (75), pp.185-189.
Berlyand M.Ye. Prognoz i regulirovaniye zagryazneniya atmosfery [Prediction and regulation of air pollution]. Leningrad, Gidrometeoizdat Publ., 1985. 273 p.
Bruyatskiy Ye.V. Teoriya atmosfernoy diffuzii radioaktivnykh vybrosov [The theory of atmospheric diffusion of radioactive emissions]. Kiev, Institut gidromekhaniki NAN Ukrainy Publ., 2000. 443 p.
Gusev N.G., Belyaev V.A. Radioaktivnyye vybrosy v biosfere [Radioactive emissions in the biosphere]. Moscow, Energoatomizdat Publ., 1991. 257 p.
Marchuk G.I. Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy [Mathematical modeling in the environmental problem]. Moscow, Nauka Publ., 1982. 320 p..
Mashikhina P.B. Modelirovaniye rasprostraneniya primesi v atmosfere s uchetom relefa mestnosti [The distribution modeling of impurities in the atmosphere with taking into account of terrain]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2009, issue 27, pp. 138-142.
Metodyka prohnozuvannia naslidkiv vylyvu (vykydu) nebezpechnykh khimichnykh rechovyn pry avariiakh na promyslovykh obiektakh i transporti [Methods of prediction the consequences of the spout (emission) of ha-zardous chemicals in accidents at industrial objects and transport]. Kyiv, 2001. 33 p.
Antoshkina L.I., Belyaev N.N., Dolina L.F., Korenyuk Ye.D. Modelirovaniye avariynykh situatsiy na promyshlennykh obektakh i bezopasnost zhiznedeyatelnosti [Simulation of emergency situations at industrial facilities and life safety]. Dnipropetrovsk, Nova ideolohiia Publ., 2011. 123 p.
Samarskiy A.A. Teoriya raznostnykh skhem [The theory of difference schemes]. Moscow, Nauka Publ., 1983. 616 p.
Uork, K., Uorner S. Zagryazneniye vozdukha. Istochniki i kontrol [Air pollution. Sources and control]. Moscow, Mir Publ., 1980. 539 p.
Zgurovskiy M.Z., Skopetskiy V.V., Khrushch V.K., Belyaev N.N. Chislennoye modelirovaniye rasprostraneniya zagryazneniya v okruzhayushchey srede [Numerical modelling of pollution spreading in the environment]. Kyiv, Naukova dumka Publ., 1997. 368 p.
15. Biliaiev M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security Series C: Environmental Security, 2012, pp. 87-91. doi: 10.1007/978-94-007-1359-8_15.
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licensing
This journal provides open access to all of its content.
As such, copyright for articles published in this journal is retained by the authors, under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0). The CC BY license permits commercial and non-commercial reuse. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project, the Directory of Open Access Journals, or the Budapest Open Access Initiative.
The CC BY 4.0 license allows users to copy, distribute and adapt the work in any way, provided that they properly point to the author. Therefore, the editorial board of the journal does not prevent from placing published materials in third-party repositories. In order to protect manuscripts from misappropriation by unscrupulous authors, reference should be made to the original version of the work.