EXPRESS METHOD OF ESTIMATION OF THE POTENTIAL TERRITORIAL RISK IN CASE OF ACCIDENTS ON TRANSPORT

Authors

DOI:

https://doi.org/10.15802/stp2016/60945

Keywords:

accidental pollution of the atmosphere, the emission of chemically hazardous substances, numerical simulation, risk assessment

Abstract

Purpose. The present research is aimed to the development of a method to assess the potential territorial risk in accidents on the railways, which takes into account the specificity of the chemically hazardous substances emission in emergency situations during their transportation. Methodology. The basis of the proposed method is numerical modeling of the transfer process is chemically dangerous substances in the atmosphere. The basis of the numerical model is the equation of convective-diffusion transfer of chemically hazardous substances. This equation takes into account the dispersion in atmosphere of dangerous substances due to wind and atmospheric diffusion. For the numerical integration of the equations of transfer of chemically hazardous substances in the atmosphere is applied an implicit finite-difference scheme of splitting. Based on the constructed numerical model was developed method for the assessment of potential territorial risk and generated code in algorithmic language Fortran. The developed method of spatio-temporal risk assessment takes into account: the territorial probable weather situations; emission mode of chemically hazardous substances; emission power; the movement of the source of emission. A computational experiment to assess the level of air pollution above the village Sinelnikovo during the emergency leak of ammonia was conducted. Findings. The proposed method allows calculating quicklythe potential risk of the leakage of chemically hazardous substances on the basis of the calculation of the level of pollution in different meteosituation. The method allows determining the size of the zone of toxic casualties and assessing the level of risk of accidents in railway transport. Using the developed numerical model evaluated the assessment of risk of casualties in the residential area of the village Sinelnikovo. Originality. The scientists established the method for the assessment of potential territorial risk, based on the numerical modeling of air pollution. The calculation of potential risk to residential areas of the village Sinelnikovo was executed. Practical value. The developed method of assessing risk potential can be used not only for solving problems of this class to objects of railway transport but also for other chemically dangerous objects. By using the developed method was evaluated potential risk to the village Sinelnikovo in the event of accidental emission of ammonia.

Author Biographies

M. M. Biliaiev, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Dep. «Hydraulics and Water Supply», Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 273 15 09

L. Ya. Muntian, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Dep. «Hydraulics and Water Supply», Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 273 15 09

References

Kotlyarevskiy V.A., Zabegayev A.V. Avariya i katastrofy. Preduprezhdeniye i likvidatsiya posledstviy. Uchebnoye posobiye v 5-ti knigakh [Accident and disasters. Warning and liquidation of consequences. Manual in 5 books]. Мoscow, ACB Publ., 2001, book 5. 416 p

Belyaev N.N., Gunko Ye.Yu., Mashikhina P.B. Matematicheskoye modelirovaniye v zadachakh ekologicheskoy bezopasnosti i monitoringa chrezvychaynykh situatsiy [Mathematical modeling in problems of environmental safety and monitoring emergencies]. Dnepropetrovsk, Aktsent PP Publ., 2013, 159 p.

Belyayev N.N., Berlov A.V. Prognozirovaniye zagryazneniya prizemnogo sloya atmosfery pri gorenii tverdogo raketnogo topliva v khranilishche [Prediction of pollution in the atmospheric surface layer during combustion of solid rocket fuel in storage]. Zbirnyk naukovykh prats Natsionalnoho Hirnychoho universytetu [Proc of National Mining University]. Dnipropetrovsk, Natsionalnyi Hirnychyi Universytet Publ., 2013, no. 42, pp. 160-167.

Berlov A.V. Raschet zagryazneniya prizemnogo sloya atmosfery pri gorenii tverdogo raketnogo topliva [Calculation of the pollution of the ground atmospheric layer during combustion of solid rocket fuel]. Naukovyi visnyk budivnytstva: zbirnyk naukovykh prats [Scientific Bulletin of Construction: Proc.], 2014, no. 1 (75), pp.185-189.

Berlyand M.Ye. Prognoz i regulirovaniye zagryazneniya atmosfery [Prediction and regulation of air pollution]. Leningrad, Gidrometeoizdat Publ., 1985. 273 p.

Gusev N.G., Belyaev V.A. Radioaktivnyye vybrosy v biosfere [Radioactive emissions in the biosphere]. Moscow, Energoatomizdat Publ., 1991. 257 p.

Marchuk G.I. Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy [Mathematical modeling in the environmental problem]. Moscow, Nauka Publ., 1982. 320 p.

Mashikhina P.B. Modelirovaniye rasprostraneniya primesi v atmosfere s uchetom relefa mestnosti [The distribution modeling of impurities in the atmosphere taking into account of terrain]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2009, issue 27, pp. 138-142.

Metodyka vyznachennia ryzykiv ta yikh pryiniatnykh rivniv dlia deklaruvannia bezpeky obiektiv pid-vyshchenoi nebezpeky [Risks definition technique and their acceptable levels for the declaration of security high-risk facilities]. Kyiv, 2002. 25 p.

Metodyka prohnozuvannia naslidkiv vylyvu (vykydu) nebezpechnykh khimichnykh rechovyn pry avariiakh na promyslovykh obiektakh i transporti [Methods of prediction the consequences of the spout (emission) of hazardous chemicals in accidents at industrial objects and transport]. Kyiv, 2001. 33 p.

Rudakov D.V. Model rasseivaniya primesi v prizemnom sloye atmosfery nad poverkhnostyu so slozhnym relefom [Model of impurity dispersion in the atmospheric surface layer over a surface with complex relief]. Visnyk Dnipropetrovskoho natsionalnoho universytetu. Seriia: Mekhanika. Vypusk 8 [Bulletin of Oles Honchar Dnipropetrovsk National University. Series: Mechanics. Volume 8], 2004, no. 6, vol 1. pp. 89-97.

Svetlichnaya S.D. Otsenka poluchennoy toksodozy pri rasprostranenii pervichnogo oblaka toksicheskogo veshchestva [Evaluation of the toxic dose received at the distribution of the primary cloud of toxic substances]. Problemy nadzvychainykh sytuatsii: zbirnyk naukovykh prats [ Problems of emergency situations: Proc.], 2011, issue 13, pp. 127-132.

Zgurovskiy M.Z., Skopetskiy V.V., Khrushch V.K., Belyaev N.N. Chislennoye modelirovaniye rasprostraneniya zagryazneniya v okruzhayushchey srede [Numerical modelling of pollution spreading in the environment]. Kyiv,Naukova dumka Publ., 1997. 368 p.

Shvyryayev A.A., Menshikov V.V. Otsenka riska vozdeystviya zagryazneniya atmosfery v issleduyemom regione [Risk assessment of pollution in the research area]. Moscow, Izdatelstvo MGU Publ., 2004. 124 p.

Biliaiev N.N., Berlov A.V. Expert system to predict the atmosphere pollution in the case of the accident at the solid rocket propellant storage. Stroitelstvo, materialovedeniye, mashinostroeniye: sbornik nauchnykh trudov [Construction, Material science, Mechanical Engineering: Proc.]. Dnepropetrovsk, 2014, issue 76, pp. 57-61.

Biliaiev M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. Air Pollution Modeling and its Application XXI. Netherlands, Springer Publ., 2012. pp. 87-91.

Schutz M., Cohen M., Whalen T., Taylor T. Maximum Possible Risk Modelling. Proc. of the 11th Joint Conf. on Information Sciences. Netherlands, Atlantis Press Publ., 2008, pp. 1-6. doi: 10.2991/jcis.2008.15.

Published

2016-02-25

How to Cite

Biliaiev, M. M., & Muntian, L. Y. (2016). EXPRESS METHOD OF ESTIMATION OF THE POTENTIAL TERRITORIAL RISK IN CASE OF ACCIDENTS ON TRANSPORT. Science and Transport Progress, (1(61), 30–38. https://doi.org/10.15802/stp2016/60945

Issue

Section

ECOLOGY AND INDUSTRIAL SAFETY