Research on Innovative Materials for Automobile Repair

Authors

DOI:

https://doi.org/10.15802/stp2025/347581

Keywords:

innovative materials, friction pair, microstructure, roughness; wear resistance; restoration of friction surfaces, hardness, roughness, wear resistance, restoration of friction surfaces

Abstract

Purpose. The main purpose of the work is to study the influence of innovative materials for car repair on the structure and properties of friction surfaces of parts and the possible mechanism of interaction of materials in tribological pairs. Methodology. The following research methods were used in the work: theoretical research (classification, systematization), analysis and generalization of known scientific results, empirical methods (comparison, observation), experimental research (metallographic analysis, microhardness testing, wear resistance testing, surface roughness measurement). Findings. Innovative materials based on serpentinites are proposed. The development is based on the ideas of using new-generation materials and controlling the processes occurring in the contact zone of friction pairs to increase the wear resistance and durability of tribological combinations. Experimental studies of the mechanism of interaction of innovative materials with 40ХН steel under friction conditions have shown that the hardness and wear resistance of the surface layer increase by 3 and 4 times, respectively, and the roughness of the contact surfaces decreases by 6 times. The components of innovative materials diffuse into the surface layers of friction surfaces and form metal-ceramic layers, which are solutions of the components of the studied materials in the phase components of 40ХН steel. The proposed innovative materials not only reduce the wear of friction surfaces, but also restore the functional condition of worn surfaces without interrupting the operation of mechanisms. Originality. The use of innovative materials to prevent wear and restore the functional condition of friction surfaces of automotive parts has been substantiated. The mechanism of action of innovative materials has been established, which consists in the directed ion diffusion of components of a special tribological composition. The mechanical and operational properties of 40ХН steel have been studied, and it has been established that an increase in the hardness of contact surfaces in combination with low roughness leads to a unique anti-friction effect. Practical value. Studies of wear processes and the formation of wear-resistant layers under the influence of innovative materials allow us to formulate conditions for treating friction surfaces to reduce wear, strengthen surfaces, and restore the functional state of worn surfaces without stopping the operation of mechanisms. Technological methods for introducing innovative materials into friction units have been developed, allowing high-quality wear-resistant layers to be obtained on friction pair surfaces.

References

Hevko, I. B., Rohatynskyi, R. M., Liashuk, O. L., Hud, V. Z., Levkovych, M. H., Stashkiv, M. Ya., & Sipravska, M. D. (2021). Osnovy tekhnolohii vyrobnytstva i remontu avtomobiliv. Ternopil, Ukraine: TNTU imeni Ivana Puliuia. (in Ukrainian)

Matierialy metalievi. Vyznachennia tverdosti za Vikhersom. Chastyna 1. Metod vyprobuvannia, DSTU ISO 6507-1:2007. (2009). (in Ukrainian)

Metaly i splavy. Metody metalohrafichnoho kontroliuvannia. Terminy ta vyznachennia poniat, 26 DSTU 7175:2010. (2010). (in Ukrainian)

Prokat iz lehovanoi konstruktsiinoi stali. Tekhnichni umovy, 50 DSTU 7806:2015. (2016). (in Ukrainian)

Tekhnichni vymohy do heometrii vyrobiv (GPS). Struktura poverkhni. Profilnyi metod. Pravyla i protsedury otsiniuvannia struktury poverkhni, 14 DSTU ISO 4288:2001. (2003). (in Ukrainian)

Tekhnichni vymohy do heometrii vyrobiv (GPS). Struktura poverkhni. Profilnyi metod. Terminy, vyznachennia poniat i parametry struktury, DSTU ISO 4287:2012. (2013). (in Ukrainian)

Klendii, V. M., Liashuk, O. L., & Hupka, A. B. (2016). Kurs lektsii z dystsypliny «Ekspluatatsiini materialy» dlia studentiv dennoi ta zaochnoi form navchannia za napriamom 6.070106 «Avtomobilnyi transport». Ternopil, Ukraine: TNTU imeni Ivana Puliuia. Retrieved from https://elartu.tntu.edu.ua/bitstream/123456789/18165/1/mater.pdf (in Ukrainian).

Murashchenko, A. M. & Yakhno, O. M. (2024). Osnovy teorii zmashchuvannia: praktychni ta laboratorni ro-boty. Kyiv, Ukraine: KPI im. Ihoria Sikorskoho. Retrieved from https://ela.kpi.ua/items/05a07668-a4fb-4aa2-b85c-b4365c139ec4 (in Ukrainian)

Nahliuk, M. I. (2023). Konspekt lektsii z dystsypliny «Ekspluatatsiini materialy»: dlia bakalavriv spets. 274 «Avtomobilnyi transport». Kharkiv, Ukraine: KhNADU. Retrieved from https://dspace.khadi.kharkov.ua/handle/123456789/17650 (in Ukrainian).

Olishevska, V. Е., Bas, K. M., & Krivda, V. V. (2025). Osnovy tekhnolohii vyrobnytstva ta remontu avtomobiliv. Praktykum. Dnipro, Ukraine: NTU «DP». Retrieved from https://ir.nmu.org.ua/handle/123456789/170985 (in Ukrainian)

Olishevskа, V. E. & Bondarchuk, T. O. (2023, April). Zastosuvannia prysadok v avtomobilnykh mastylnykh materialakh. In Tyzhden studentskoi nauky 2023. Materialy 78 studentskoi naukovo-tekhnichnoi konferentsii (pp. 150-152). Dnipro, Ukraine. Retrieved from: https://ir.nmu.org.ua/handle/123456789/163735 (in Ukrainian).

Olishevska, V. E., & Olishevskyi, H. S. (2024). Substantiating rational rolling stock at an enterprise in the transi-tion to electric vehicles. Avtoshliakhovyk Ukrayiny, 2, 35-44. DOI: https://doi.org/10.33868/0365-8392-2024-2-279-35-44 (in Ukrainian)

Olishevska, V. Е., Olishevskyi, H. S. & Ivanova, H. P. (2025). Metal Structural Materials for the Production and Repair of Automobile Parts: Practice and Prospects. Science and Transport Progress, 3(111), 111-129. DOI: https://doi.org/10.15802/stp2025/341197 (in Ukrainian).

Plemiannikov, M. M. & Tobilko, V. Yu. (2021). Silikatne materialoznavstvo. Kyiv, Ukraine: KPI im. Ihoria Si-korskoho. Retrieved from https://ela.kpi.ua/server/api/core/bitstreams/6917f3d1-ac80-4c19-a3c9-791682a40f3e/content (in Ukrainian)

Ministerstvo transportu Ukrainy. (1998). Pro zatverdzhennia «Polozhennia pro tekhnichne obsluhovuvannia i remont dorozhnikh transportnykh zasobiv avtomobilnoho transportu». Retrieved from https://zakon.rada.gov.ua/laws/show/z0268-98#Text (in Ukrainian)

Prokopovych, I. V. (2020). Metaloznavstvo. Odesa, Ukraine: Ekolohiia (in Ukrainian)

Pushka, O. S. & Voitik, A. V. (2020). Konspekt lektsii z dystsypliny «Palyvno-mastylnі ta inshi ekspluatatsiini materialy». Uman, Ukraine: Umanskyi NUS. Retrieved from https://pmoapv.udau.edu.ua/assets/files/2021/lekcii/pmm-lz.pdf (in Ukrainian)

Cai, X., Li, S., Zeng, W., Huang, K., Zhao, L., Zeng, D. & Tu, X. (2024). Improving dispersion and tribological performance of MoS₂ lubricant additive with the synergistic effects of MSH and amorphous carbon. Journal of Materials Research and Technology, 29, 2509-2519. DOI: https://doi.org/10.1016/j.jmrt.2024.02.003 (in English)

Gao, R., Chang, Q., Lichun, H. & He, Y. (2024). Nano magnesium silicate hydroxide as synergistic lubricant ad-ditive with micro carbon sphere for enhanced tribological properties. Journal of Tribology, 146(3), 031702. DOI: https://doi.org/10.1115/1.4063702 (in English)

Ghaednia, H., Hossain, M. S. & Jackson, R. (2016). Tribological performance of silver nanoparticle–enhanced polyethylene glycol lubricants. Tribology Transactions, 59(4), 585-592. DOI: https://doi.org/10.1080/10402004.2015.1092623 (in English)

Ghosh, G. K., Panda, S., Kumar, N., Ghosh, S. K., Kotia, A., Giri, J., Kanan, M. & Sathish, T. (2025). A multi-faceted review on industrial grade nanolubricants: Applications and rheological insights with global market forecast. Results in Engineering, 25, 103628. DOI: https://doi.org/10.1016/j.rineng.2024.103628 (in English)

Guan, Z., Wu, Z., Liu, J., Tu, X. & Li, S. (2022). Controllable fabrication of magnesium silicate hydroxide rein-forced MoS2 hybrid nanomaterials as effective lubricant additives in PAO. Applied Surface Science, 597, 153777. DOI: https://doi.org/10.1016/j.apsusc.2022.153777 (in English)

Korkmaz, M. E. & Gupta, M. K. (2024). Nano lubricants in machining and tribology applications: A state of the art review on challenges and future trend. Journal of Molecular Liquids, 407, 125261. DOI: https://doi.org/10.1016/j.molliq.2024.125261 (in English)

Leach, F., Kalghatgi, G., Stone, R., & Miles, P. (2020). The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 1, 100005. DOI: https://doi.org/10.1016/j.treng.2020.100005 (in English)

Lue, Y.-F., Hsiao, W.-L. & Chen, Y.-S. (2023). Tribology performance of silica nanoparticles as lubricant addi-tives in a reciprocating four-stroke engine motorcycle. International Journal of Automotive Technology, 24(2), 435-444. DOI: https://doi.org/10.1007/s12239-023-0036-3 (in English)

Lyubchenko, O. & Gapochenko, S. (2024). Modification of frictional surfaces of bearings by addition of nano-particle compositions to lubricants. Bulletin of the National Technical University «KhPI». Ser. : New solu-tions in modern technology, 3(21), 3-9. DOI: https://doi.org/10.20998/2413-4295.2024.03.01 (in English)

Olishevska, V. E., Isakova, M. L. & Stashevska, I. (2021, April). Features of molybdenum disulfide friction. In Widening our Horizons. Proceedings of the 16th International Forum for Students and Young Researchers (pp. 236-239). Dnipro, Ukraine. Retrieved from https://ir.nmu.org.ua/handle/123456789/160283 (in English)

Wang, C., Yu, H., Yin, Y., Zhou, X., Wang, H., Song, Z., Wang, S., Yang, Z. & Bai, Z. (2024). Preparation and tribological behaviors of antigorite and wollastonite mineral dual-phase-reinforced polytetrafluoroethylene matrix composites. Lubricants, 12(3), 74. DOI: https://doi.org/10.3390/lubricants12030074 (ig English)

Wang, L., Gong, P., Li, W., Luo, T. & Cao, B. (2020). Mono-dispersed Ag/graphene nanocomposite as lubricant additive to reduce friction and wear. Tribology International, 146, 106228. DOI: https://doi.org/10.1016/j.triboint.2020.106228 (in English)

Zhao, J., Huang, Y., He, Y., & Shi, Y. (2021). Nanolubricant additives: A review. Friction, 9(5), 891-917. DOI: https://doi.org/10.1007/s40544-020-0450-8 (in English)

Published

2025-12-26

How to Cite

Olishevska, V. E., Olishevskyi, H. S., & Ivanova, H. P. (2025). Research on Innovative Materials for Automobile Repair. Science and Transport Progress, (4(112), 96–107. https://doi.org/10.15802/stp2025/347581

Issue

Section

OPERATION AND REPAIR OF TRANSPORT MEANS