Metal Structural Materials for the Production and Repair of Automobile Parts: Practice and Prospects

Authors

DOI:

https://doi.org/10.15802/stp2025/341197

Keywords:

automotive parts, impact strength, strength, material classification, composite materials, steels

Abstract

Purpose. The main purpose of the work is to review and systematize metal structural for the production and repair of automobile parts, as well as analyze modern trends in their further development. Methodology. The main problems associated with metal structural materials today include the following: high density of materials, which increases the mass of the car, the consumption of fuel and lubricants and the amount of harmful emissions into the atmosphere; the need to ensure the strength and reliability of automobile structures; the need to ensure passive and active safety; the susceptibility of materials to corrosion, the scale of which can be judged by the fact that approximately 20 % of the steel produced in the world is used to cover losses from corrosion; the task of reducing the environmental load on the environment; the development of new materials that meet modern requirements; the selection and justification of structural materials for car parts; preparation for post-war reconstruction, the need to save resources. The following research methods were used in the work: theoretical research (classification, systematization), analysis and generalization of known scientific results, empirical methods (comparison, observation), experimental research (metallographic analysis, impact toughness testing). Findings. The current state and problems associated with metal structural materials are analyzed; it is shown that structural materials significantly affect the mass of the car, strength, reliability, corrosion resistance, fuel and lubricant consumption and the number of harmful emissions into the atmosphere. The analysis of structural carbon steels allows us to correctly formulate the requirements for steels of certain groups of automotive parts, and to select materials for the manufacture or repair of automobile parts, taking into account the properties of the material, purpose and operating conditions of automotive parts. Modern trends in the development of new materials for road transport are considered: high-strength steels, aluminum alloys, nanomaterials, composite materials. The possibilities of creating layered composite materials by explosion welding are investigated, and impact toughness tests are conducted. Originality. A comprehensive analysis of the problems of metal structural materials has been carried out, which allows us to identify their impact on the mass of the car, the consumption of fuel and lubricants and the number of harmful emissions into the atmosphere. The main trends in the development of metal structural materials have been highlighted; the approach to assessing materials according to the criterion of embodied energy has been considered. It is emphasized that the development of innovative technologies for creating new metal structural materials is an important step towards the transition to environmentally friendly transport in the country. The use of layered metal composite materials as materials with high fracture toughness has been substantiated. Practical value. An analysis of the main grades of structural carbon steels has been carried out, which allows us to correctly formulate the requirements for steels of certain groups of automotive parts, as well as to select materials for the manufacture and repair of automotive parts, taking into account the properties of steels, the purpose and operating conditions of automotive parts. The directions and problems of metal structural materials for automotive parts have been highlighted. Layered metal composite materials obtained by explosion welding have been proposed as materials with high fracture toughness.

References

Buriennikov, Yu. A., Syvak, I. O., & Sukhorukov, S. I. (2020). Novi materialy ta kompozyty : konspekt lektsii Ch. 1. Vinnytsia: VNTU. URL: https://bmi.vntu.edu.ua/bioart/program/NM_lect.pdf (in Ukrainian)

Doroshenko, V. S., & Kaliuzhnyi, P. B. (2024). Isothermal hardening of iron-carbon alloys combined with their casting. Metal Science and Treatment of Metals, 30(1), 47-59. DOI: https://doi.org/10.15407/mom2024.01.047 (in Ukrainian)

Doroshenko, V. S., & Klymenko, S. I. (2024, April). Pro optymalnyi vybir lyvarnykh splaviv dlia avtopromyslovosti z urakhuvanniam vtilenoi enerhii. Novi materialy i tekhnolohii v mashynobuduvanni-2024 : materialy XVI mizhnarodnoi naukovo-tekhnichnoi konferentsii (pp. 138-143). Kyiv, Ukraine. URL: https://foundry.kpi.ua/wp-content/uploads/2024/06/conferenziya_2024.pdf (in Ukrainian)

Stal vuhletseva zvychainoi yakosti. Marky, 24 DSTU 2651:2005. (2006). (in Ukrainian)

Prutky, shtaby ta motky z instrumentalnoi nelehovanoi stali. Zahalni tekhnichni umovy, 58 DSTU 3833-98. (2000). (in Ukrainian)

Chavun z kuliastym hrafitom dlia vylyvkiv. Marky. Z popravkamy (IPS № 9-2002, IPS № 8-2006), 25 DSTU 3925-99. (1999). (in Ukrainian)

Prokat sortovym, kalibrovanym zi spetsialnym obroblenniam poverkhni z vuhletsevoi yakisnoi konstruktsiinoi stali. Zahalni tekhnichni umovy, 25 DSTU 7809:2015. (2016). (in Ukrainian)

Prokat iz resorno-pruzhynnoi vuhletsevoi ta lehovanoi stali. Tekhnichni umovy, 19 DSTU 8429:2015. (2016). (in Ukrainian)

Vylyvky iz siroho chavunu z plastynchastym hrafitom. Zahalni tekhnichni umovy, 11 DSTU 8833:2019. (2019). (in Ukrainian)

Stal austenitna. Metody vyznachennia vmistu ferytnoi fazy v prutkakh, DSTU 9029:2020. (2021). (in Ukrainian)

Stali. Vyznachennia y klasyfikatsiia, DSTU EN 10020:2007 (EN 10020:2000, IDT). (2009). (in Ukrainian)

Metalevi materialy. Vyprobuvannia na udarnyi vyhyn za Sharpi na maiatnykovomu kopri. Chastyna 1. Metod vyprobuvannia (ISO 148-1:2016, IDT), 28 DSTU ISO 148-1:2022. (2022). (in Ukrainian)

Krivtsun, I. V., Kvasnytskyi, V. V., Maksymov, S. Yu., & Yermolaiev, G. V. (2017). Spetsialni sposoby zvariuvan-nia : pidruchnyk. (Patona, B. Ye. (Ed.)). Mykolaiv : NUK. URL: https://www.researchgate.net/profile/Gennadii-Yermolaiev/publication/321796647_SPECIALNI_SPOSOBI_ZVARUVANNA/links/5a32349b458515afb6555f62/SPECIALNI-SPOSOBI-ZVARUVANNA.pdf (in Ukrainian)

Lynnyk, I. E., Lezhneva, O. I., Dorozhko, Ye. V., Vakulenko, K. Ye., Sokolova, N. A. & Afanas'yeva, I. A. (2020). Ekolohichni aspekty avtotransportnoho kompleksu: monohrafiia. Kharkiv: Vydavnytstvo «Smuhasta typohrafiya» (in Ukrainian)

Lyashuk, О. L., Plekan, U. M., Tson, О. P., & Gevko, B. R. (2023). Development Technologies of Cars Hybrid Power Plants. Central Ukrainian Scientific Bulletin. Technical Sciences, 8(39), Р. 1, 139-146. DOI: https://doi.org/10.32515/2664-262X.2023.8(39).1.139-146 (in Ukrainian)

Mytko, M. V., Shylina, O. P., & Tsymbal, S. V. (2022). Osnovy tekhnolohii vyrobnytstva ta remontu avtomobiliv. Orhanizatsiia samostiinoi ta praktychnoi roboty : navch. posib. Vinnytsia : VNTU. URL: https://ir.lib.vntu.edu.ua//handle/123456789/35995 (in Ukrainian)

Olishevska, V. Ye., Bas, K. M., & Krivda, V. V. (2022). Konstruktsiini ta ekspluatatsiini materialy v avtomobilnii haluzi : metod. rek. do praktychnykh zaniat. Dnipro: NTU «DP». URL: https://ir.nmu.org.ua/handle/123456789/161278 (in Ukrainian)

Olishevska, V. Ye., Bas, K. M., & Krivda, V. V. (2025). Osnovy tekhnolohii vyrobnytstva ta remontu avtomobiliv. Praktykum : navch. posib. Dnipro: NTU «DP». URL: https://ir.nmu.org.ua/handle/123456789/170985 (in Ukrainian)

Olishevska, V. E., Ivanova, H. P., & Olishevskyi, H. S. (2025). Recycling Lead Acid Car Batteries: Challenges and Prospects. Science and Transport Progress, 1(109), 142-151. DOI: https://doi.org/10.15802/stp2025/325342 (in Ukrainian)

Olishevska, V. E., Olishevskyi, H. S., & Ivanova, H. P. (2025). Electric Vehicle Batteries: Technical and Environmental Aspects. Science and Transport Progress, 2(110), 35-49. DOI: https://doi.org/10.15802/stp2025/332155 (in Ukrainian)

Pavlenko V. M., & Suxomlin O. O. (2024, October) Rol suchasnykh materialiv u zabezpechenni bezpeky transportnykh zasobiv. In Modern automotive industry, transport and road infrastructure ‘2024 (MAITRI 2024) : book of abstracts International Scientific and Practical Conference until the Day of Workers of Automobile Transport and Road Workers (pp. 101-104). Kharkiv. URL: https://af.khadi.kharkov.ua/fileadmin/F-AUTOMOBILE/Конференції/2024/_тези24.pdf (in Ukrainian)

Palyvoda, O. M. (2023). Growth Strategies for Transport Enterprises of Ukraine in the Conditions of European Integration and War. Business Inform, 8, 185-192. DOI: https://doi.org/10.32983/2222-4459-2023-8-185-192 (in Ukrainian)

Prokopovych, I. V. (2020). Metaloznavstvo : navch. posib. Odesa: Ekolohiia. (in Ukrainian)

Rudasov, V. B., Yakubovskyi, O. M., & Holovina, O. V. (2022). Suchasni tendentsii zastosuvannia stalei pidvyshchenoi mitsnosti v avtomobilebuduvanni. Vcheni zapysky TNU imeni V. I. Vernadskoho. Seriia: Tekhnichni nauky. Vol. 33(72), 1, 12-18. DOI: https://doi.org/10.32838/2663-5941/2022.1/03 (in Ukrainian)

Sobkevych, O. V., Shevchenko, A. V., Rusan, V. M., Bielashov, Ye. V., Zhurakovska, L. A., & Zhalilo, Ya. A. (2024). Priorytety rozvytku realnoho sektora v umovakh viiny ta povoiennoho vidnovlennia ekonomiky Ukrainy: analitychna dopovid. Kyiv: NISD. DOI: https://doi.org/10.53679/NISS-analytrep.2024.03 (in Ukrainian)

Kholiavko, V. V., & Vladymyrskyi, I. A. (2023). Mekhanichni vlastyvosti ta konstruktsiina mitsnist materialiv : pidruchnyk. Kyiv: KPI im. Ihoria Sikorskoho. URL: https://ela.kpi.ua/handle/123456789/62087 (in Ukrainian)

Dawson, S., Ferrarese, A., & Marquard, R. (2023). Cast iron cylinder blocks: Same weight as aluminum; Lower emissions. SAE Technical Paper, 2023-01-0439. DOI: https://doi.org/10.4271/2023-01-0439 (in English)

Keough, J. (2023, October). The perspective of life cycle analysis in market decisions. Modern Casting, 34-37. Retrieved from https://cdn.coverstand.com/55001/804496/89f24fa87b37761cd433c2e3317adc9fa3957242.1.pdf (in English)

Leach, F., Kalghatgi, G., Stone, R., & Miles, P. (2020). The scope for improving the efficiency and environmental impact of internal combustion engines. Transportation Engineering, 1, 100005. DOI: https://doi.org/10.1016/j.treng.2020.100005 (in English)

Olishevska, S. O., & Olishevska, V. Ye. (2025, March). Research of impact viscosity of composite materials. Naukova vesna 2025 : materialy XV mizhnarodnoi naukovo-tekhnichnoi konferentsii aspirantiv ta molodykh vchenykh (pp. 50-51). Dnipro, Ukraine. URL: https://ecology.nmu.org.ua/ua/Studies/Scientific_Spring_2025.pdf (in English)

Pivnyak, G., Olishevska, V., Olishevskiy, H., Lutsenko, I., & Lysenko, A. (2024). Comprehensive research of electric cars development and related infrastructure in Ukraine. Physical & Chemical Geotechnologies: 8th International Conference E3S Web of Conferences, 567, 01025. DOI: https://doi.org/10.1051/e3sconf/202456701025 (in English)

Published

2025-09-26

How to Cite

Olishevska, V. E., Olishevskyi, H. S., & Ivanova, H. P. (2025). Metal Structural Materials for the Production and Repair of Automobile Parts: Practice and Prospects. Science and Transport Progress, (3(111), 111–129. https://doi.org/10.15802/stp2025/341197

Issue

Section

TRANSPORT CONSTRUCTION