NUMERICAL SIMULATION OF VISCOELASTIC MATERIALS

Authors

DOI:

https://doi.org/10.15802/stp2014/30811

Keywords:

mechanical properties, numerical model, viscoelastic material, generalized Maxwell model, finite element method

Abstract

Purpose. The main goal of this paper is to develop the numerical model of viscoelastic material using finite element method (FEM). The model was applied to asphalt-aggregate mixtures. Additionally the obtained numerical results with use of different FEM software were compared with experimental data. Methodology. In order to perform the investigation, the numerical specimen was built within FEM software. Material of the specimen was assumed to be viscoelastic. Viscoelastic materials are characterized by a combination of elastic behavior, which stores energy during deformation, and viscous behavior, which dissipates energy during deformation. It was assumed that the behavior of the material corresponds to generalized Maxwell model. The model consists of a spring element in parallel with a number of spring and dashpot Maxwell elements. Generalized Maxwell model consisting of 5 elements was offered at . Mechanical properties of the material correspond to the properties of real asphaltic material. Findings. As the result of calculations the stress and strain state of the asphalt specimen were obtained. To compare mechanical characteristics of the model with experimental data the dynamic elastic modulus and phase angle values were calculated. Originality. Viscoelastic material model based on generalized Maxwell scheme was developed using ANSYS software. In order to compare the numerical model of the material with real asphalt-aggregate mix data, the values of dynamic modulus and phase angle were selected. Analyzing the results of calculations one can see good correspondence of numerical material model to experimental data. Moreover, the numerical data obtained with ANSYS and LS-DYNA software were compared. Practical value. It should be emphasized that FEM gives the possibility of determining stresses and strains for asphalt pavement non-elastic models what is of great importance using mechanistic design procedures.

Author Biography

S. P. Panchenko, Prydniprovsk State Academy of Civil Engineering and Architecture

Dep. «Structural Mechanics and Strength of Materials»

References

Petrenko V.D., Selikhova T. O. Osoblyvosti modeliuvannia sharuvatoi osnovy pry yii doslidzhenni metodom skinchennykh elementiv [Features modeling of layered basis during its study with finite elements method]. Sbornik materialov Mezhdunarodnoy nauchno-prakticheskoy konferentsii «Transportnyye svyazi. Problemy i perspektivy» [Proc. of Int. Sci. and Practical Conf. «Transport relations. Problems and prospects»]. Dnipropetrovsk, 2008, pp. 60-61.

Ryaboshapka A.N., Koshman Ye.I. Asfaltobeton iz goryachikh smesey [Hot-mixture asphalt concrete]. Zbirnyk naukovykh prats «Budivnytstvo» [Proc. «Construction»]. Dnipropetrovsk, 2001, issue 9, pp. 120-122.

Bland D.R. The Theory of Linear Viscoelasticity. Oxford, Pergamon Press Publ., 1960. 67 p.

Christensen R.M. Theory of Viscoelasticity. New York, Academic Press Publ., 1982. 384 p.

Grzesikiewicz W., Zbiciak A. Zastosowanie pochodnej ułamkowego rzędu do modelowania mieszanek mineralno-asfaltowych. Pomiary Automatyka Kontrola, 2011, no. 9, pp. 1048-1051.

Kalabińska M., Piłat J. Właściwości reologiczne asfaltów i kompozytów mineralno-asfaltowych. Seria «Budownictwo». Warszawa, OWPW Publ., 1993. 121 p.

Kim Y.R. Modeling of Asphalt Concrete. New York, ASCE Press, McGraw-Hill, 2009. 460 p.

Nowacki W. Teoria pełzania. Warszawa, Arkady Publ., 1963. 407 p.

Papagiannakis A.T., Masad E.A. Pavement Design and Materials. NJ, Wiley Publ., 2008. 552 p. doi: 10.1002/ 9780470259924.

Wang L. Mechanics of Asphalt, Microstructure and Micromechanics. New York, Mc Graw Hill, 2011. 481 p.

Zbiciak A. Application of elasto-visco-plastic constitutive model for asphalt pavement creep simulation. Archives of Civil Engineering, 2008, no. 54, 3, pp. 635-647.

Zbiciak A. Constitutive modelling and numerical simulation of dynamic behavior of asphalt-concrete pavement. Engineering Transactions, 2008, no. 56, 4, pp. 311-324.

Zbiciak A., Grzesikiewicz W. Identification of constitutive model for asphalt-aggregate mixes using linear rheological schemes. Polioptymalizacja i Komputerowe Wspomaganie Projektowania, 2012, no. 10, pp. 187-196.

Zbiciak A., Michalczyk R. Identyfikacja doświadczalna i implementacja numeryczna modelu reologicznego mieszanki mineralno-asfaltowej. Monografie Zakładu Wytrzymałości Materiałów, «Teorii Sprężystości i Plastyczności», tom3 pt. «Deformacje i wytrzymałość materiałów i elementów konstrukcji». Warszawa, OWPW. 2013, rozdz. 3, pp. 41-50.

Zbiciak A. Mathematical description of rheological properties of asphalt-aggregate mixes. Bulletin of the Polish Academy of Sciences: Technical Sciences, 2013, no. 61 (1), pp. 65-72. doi: 10.2478/bpasts-2013-0005.

Zbiciak A., Grzesikiewicz W., Wakulicz A. One-dimensional rheological models of asphalt-aggregate mixtures. Logistyka, 2010, no. 6, pp. 3825-3832.

Downloads

Published

2014-11-24

How to Cite

Panchenko, S. P. (2014). NUMERICAL SIMULATION OF VISCOELASTIC MATERIALS. Science and Transport Progress, (5(53), 157–165. https://doi.org/10.15802/stp2014/30811

Issue

Section

TRANSPORT CONSTRUCTION