Power Factor Increase of Electric Drives of Railway Shunting Winches

Authors

DOI:

https://doi.org/10.15802/stp2021/253288

Keywords:

power factor, shunting winch, loading factor, cosine capacitor, unloading-loading of cars, energy saving

Abstract

Purpose. The main purpose of the work is to develop recommendations for increasing the power factor of electric drives of railway shunting winches, taking into account the peculiarities of the technological process at loading and unloading sites. To achieve this purpose, the following tasks were set: to choose a rational way to increase the power factor of the electric drive of shunting winch, taking into account the peculiarities of the technological process, simplicity and reliability of the electrical circuit; develop a methodology (calculation algorithm) to determine the elements of the circuit, which are designed to increase the power factor; conduct research to determine the numerical technical characteristics of these elements, using the developed methodology; assess the power factor increase for the electric drive of some models of winches; formulate recommendations on possible modernization of the electric drive of shunting winches. Methodology. An algorithm for calculating the reactive power of an unregulated cosine capacitor, which has to be permanently connected to the terminals of a three-phase induction motor of a shunting winch drive in order to increase the power factor, is developed. Findings. Studies have shown that the proposed method of increasing the power factor gives a significant increase in different values of the load factor of the shunting winch motor, while ensuring the simplicity of the scheme and its reliability. Originality. For the first time, taking into account the peculiarities of the technology of unloading and loading cars, a method of calculating the required reactive power of an unregulated cosine capacitor, which is connected to the terminals of the drive motor, is proposed. The formula for determining the load factor of the electric motor depending on the ratio of unloaded and loaded cars that move with a winch is proposed. The formula for determining the load factor of the electric motor depending on the ratio of unloaded and loaded cars, which move using a winch is proposed. Practical value. The results are of practical value because the obtained numerical values of increasing the power coefficients of the drives of shunting winches and reactive power required for this cosine capacitors can be used as primary information in deciding whether it is advisable to modernize winch drives by connecting to the terminals of three-phase induction motor.

References

Baliichuk, O. Yu., Dubynets, L. V., Marenych, O. L., & Lysenko, O. O. (2017). Increasing of the power factor of non-standard equipment of enterprises for repairing the railway rolling-stock. Electrification of Transport, 14, 31-36. (in Ukrainian)

Vaskovsky, Y. M., & Geraskin, O. A. (2013). Metodychni vkazivky i kontrolni zadachi do praktychnyx zanyat z dyscypliny «Elektrychni mashyny». Rozdil «Asynxronni mashyny» dlya studentiv osvitno-kvalifikacijnogo rivnya «bakalavr» napryamu pidgotovky 6.050702» Elektromexanika». Kyiv: NTUU«KPI». (in Ukrainian)

Voloshko, A. V. (2016). Metodychni vkazivky do vykonannya praktychnyx robit z dyscypliny: «Kompleksne keruvannya energovykory`stannyam» dlya studentiv napryamu 6.050701 «Elektrotexnika ta texnolo-giyi» specialnosti «Elektrotexnichni sy`stemy elektrospozhyvannya», «Energetychnyj menedzhment» 7.05007103, 8.05.007103. Kyiv: NTUU«KPI». (in Ukrainian)

Grabko, V. V., Rozvodyuk, M. P., Levitsky, S. M., & Kozak, M. O. (2007). Eksperymentalni doslidzhennya elektrychnyx mashyn. In Asynxronni mashyny: navchalnyj posibnyk. (Vol. 3.). Vinnytsia: VNTU. (in Ukrainian)

Dubinets, L. V., Karzova, O. A., Krasnov, R. V., Marenich, O. L., & Melnik, A. A. (2013). Uluchshenie energeticheskikh pokazateley predpriyatiy po remontu podvizhnogo sostava. Mining Electromechanics and Automationа, 90, 144-150. (in Russian)

Zagalni vidomosti pro kompensaciyi reaktyvnoyi potuzhnosti. Retrieved from https://electrocontrol.com.ua/ua/stati-sxemy-i-spravochnaya-informaciya/obshhie-svedeniya-o-kompensacii-reaktivnoj-moshhnosti.html (in Ukrainian)

Catalog. Winch. Retrieved from https://vintalplus.com.ua/catalog (in Russian)

Koeficiyent potuzhnosti. Retrieved from https://uk.wikipedia.org/wiki/Коефіцієнт_потужності (in Ukrainian)

Kondensator kosinusnyy EZ SILKO CSADG 1-0,4/20N (20 kVAr). Retrieved from https://electrocontrol.com.ua/kondensatory/kondensator-kosinusnyi-csadg-1-04-20-20-kvar-zez-silko-00010013 (in Russian)

Lavruxin, O. V., Baulina, G. S., Kostyennikov, O. M., & Bogomazovata, G. Ye. Vantazhni perevezennya na zaliznychnomu transporti: pidruchnyk. (Vol. 1). Kharkiv: Ukr. DUZT. (in Ukrainian)

Manevrovye lebedki. Retrieved from https://аир.com.ua/pto/lebedki/manevrovye (in Russian)

Marenich, O. L., & Gatsulyak, A. V. (2020, September). Dejaki shljakhy pidvyshhennja energhetychnykh pokaznykiv elektropryvodiv pidpryjemstv z remontu rukhomogho skladu zaliznycj. Abstracts of the 80th International Scientific and Practical Conference «Problems and Prospects of Railway Transport Development» (pp. 57-58). Dnipro, Ukraine. (in Ukrainian)

Postnikova, M. V., & Kvitka, S. O. (2020). Rozrakhunok enerhetychnykh pokaznykiv asynkhronnoho elektrodvyhuna z korotkozamknenym rotorom: metodychni vkazivky do praktychnoyi roboty. Melitopol: TDATU. (in Ukrainian)

Typy i rozmiry zaliznychnykh vaghoniv. Retrieved from https://cutt.ly/YOXrWlE (in Ukrainian)

Chorny, O. P., Zachepa, V. K., Tityuk, O. A., & Chorna, O. A. (2019). Monitorynh i diahnostyka elek-tromekhanichnykh obyektiv: navchalnyy posibnyk. Kremenchug: ChP Shcherbatykh A. V. (in Ukrainian)

Elektrodvigateli 4A i 4AM. Katalog i tekhnicheskie kharakteristiki. Retrieved from https://аир.com.ua/elektrodvigateli-4a-i-4am/ (in Ukrainian)

De Keyser, A., Vansompel, H., & Crevecoeur, G. (2021). Real-Time Energy-Efficient Actuation of Induction Motor Drives Using Approximate Dynamic Programming. IEEE Transactions on Industrial Electronics, 68(12), 11837-11846. DOI: https://doi.org/10.1109/tie.2020.3044791 (in English)

Lane, M., Shaeboub, A., Gu, F., & Ball, A. D. (2017). Investigation of reductions in motor efficiency and power factor caused by stator faults when operated from an inverter drive under open loop and sensorless vector modes. Systems Science & Control Engineering, 5(1), 361-379. DOI: https://doi.org/10.1080/21642583.2017.1367734 (in English)

Khodapanah, M., Zobaa, A. F., & Abbod, M. (2018). Estimating power factor of induction motors at any loading conditions using support vector regression (SVR). Electrical Engineering, 100(4), 2579-2588. DOI: https://doi.org/10.1007/s00202-018-0723-7 (in English)

Kostin, M., Mishchenko, T., & Hoholyuk, O. (2020, September). Fryze Reactive Power in Electric Transport Sys-tems with Stochastic Voltages and Currents. In 2020 IEEE 21st International Conference on Computa-tional Problems of Electrical Engineering (CPEE) (pp. 1-4). Poland. DOI: https://doi.org/10.1109/cpee50798.2020.9238672 (in English)

Xiao, H., Chuang, H.-C., Yang, Z.-H., & Lee, C.-T. (2021). The efficiency improvement of induction motor with constant speed for belt drive mechanism. Energy Efficiency, 14(8). DOI: https://doi.org/10.1007/s12053-021-10009-6 (in English)

Wibowo, P. M., Haddin, M., & Marwanto, A. (2021). Energy saving analysis of air fan motor in power plant boiler controlled by variable frequency drive. International Journal of Power Electronics and Drive Systems (IJPEDS), 12(4), 2059-2069. DOI: https://doi.org/10.11591/ijpeds.v12.i4.pp2059-2069 (in English)

Published

2021-10-18

How to Cite

Marenych, O. L., & Karzova, O. O. (2021). Power Factor Increase of Electric Drives of Railway Shunting Winches. Science and Transport Progress, (5(95), 5–16. https://doi.org/10.15802/stp2021/253288

Issue

Section

ELECTRIC TRANSPORT, POWER SYSTEMS AND COMPLEXES