MODELING OF THE PROCESS OF BIOLOGICAL WASTEWATER TREATMENT BASED ON CHAMBER MODELS
DOI:
https://doi.org/10.15802/stp2020/208553Keywords:
water purification, numerical simulation, bioreactor, water useAbstract
Purpose. The aim of the work is to develop multifactor chamber models for rapid evaluation of the efficiency of reactors for biological wastewater treatment. Methodology. Two numerical chamber models have been developed for computer simulation of the biological wastewater treatment process. The models are based on the law of mass conservation for substrate and activated sludge. The models are zero-dimensional. In the first chamber model, the pollutant oxidation process is calculated based on a first-order reaction. The second chamber model uses the Monod model to calculate pollutant oxidation. Euler's method is used for numerical integration of modeling equations. The models allow, when calculating the bioreactor, to take into account the change over time in the concentration of activated sludge, the substrate entering the reactor for biological wastewater treatment. Findings. The software implementation of the developed numerical models is carried out. The results of computer experiments to study the efficiency of wastewater treatment in reactors for biological wastewater treatment for different operating conditions are presented. Originality. Two computer chamber models have been developed to quickly evaluate the efficiency of a bioreactor for wastewater treatment under different operating conditions. Practical value. The developed computer models can be used to determine the efficiency of biological wastewater treatment in reactors under different operating conditions.
References
Biliaiev, N. N., & Nagornaya, E. K. (2012). Matematicheskoye modelirovaniye massoperenosa v otstoynikakh sistem vodootvedeniya: monografiya. Dnepropetrovsk: Novaya ideologiya. (in Russian)
Biliaiev, N. N., & Kozachina, V. A. (2015). Modelirovaniye massoperenosa v gorizontalnykh otstoynikakh: monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)
Vasylenko, O. A., Hrabovskyi, P. O., Larkina, H. M., Polishchuk, O. V., & Prohulnyi, V. Y. (2010). Rekonstruktsiia i in-tensyfikatsiia sporud vodopostachannia ta vodovidvedennia: navchalnyi posibnyk. Kyiv: IVNVKP «Ukrheliotek». (in Ukrainian)
Karelin, Ya. A., Zhukov, D. D., Zhurov, V. N., & Repin, B. N. (1973). Ochistka proizvodstvennyh stochnyh vod v aerotenkah. Moscow: Stroiyzdat. (in Russian)
Laskov, Yu. M., Voronov, Yu. V., & Kalicun, V. I. (1981). Primery raschetov kanalizacionnyh sooruzhenij. Moscow: Vysshaya Shkola. (in Russian)
Oleynik, A. Y., & Airapetyan, T. S. (2015). The modeling of the clearance of waste waters from organic pollutions in bioreactors-aerotanks with suspended (free flow) and fixed biocenoses. Reports of the National Academy of Sciences of Ukraine, 5, 55-60. DOI: https://doi.org/10.15407/dopovidi2015.05.055 (in Ukrainian)
Alharbi, A. O. M. (2016). The biological treatment of wastewater: mathematical models. Bulletin of the Australian Mathematical Society, 94(2), 347-348. DOI: https://doi.org/10.1017/s0004972716000411 (in English)
Amaral, A., Gillot, S., Garrido-Baserba, M., Filali, A., Karpinska, A. M., Plósz, B. G., … & Rosso, D. (2019). Modelling gas-liquid mass transfer in wastewater treatment: when current knowledge needs to encounter engineering practice and vice-versa. Water Science & Technology, 80(4), 607-619. DOI: https://doi.org/10.2166/wst.2019.253 (in English)
Babaei, A., Azadi, R., Jaafarzadeh, N., & Alavi, N. (2013). Application and Kinetic Evaluation of upflow Anaerobic biofilm Reactor for Nitrogen Removal from Wastewater. Iranian Journal of Environmental Health Science and Engineering, 10(1), 1-8. DOI: https://doi.org/10.1186/1735-2746-10-20 (in English)
Bomba, A., Klymiuk, Y., Prysiazhniuk, I., Prysiazhniuk, O., & Safonyk, A. (2016). Mathematical modeling of wastewater treatment from multicomponent pollution by through microporous filling. AIP Conference Proceedings, 1773, 040003-1-040003-11. DOI: https://doi.org/10.1063/1.4964966 (in English)
Dapelo, D., & Bridgeman, G. (2020). A CFD strategy to retrofit an anaerobic digester to improve mixing performance in wastewater treatment. Water Science & Technology, 81(8), 1646-1657. DOI: https://doi.org/10.2166/wst.2020.086 (in English)
Gao, H., & Stenstrom, M. K. (2019). Development and applications in CFD modeling for secondary settling tanks over the last three decades: A review. Water Environment Research, 92(6), 796-820 DOI: https://doi.org/10.1002/wer.1279 (in English)
Gao, H., & Stenstrom, M. K. (2020). Influence of Model Parameters and Inlet Turbulence Boundary Specification Methods in Secondary Settling Tanks: Computational Fluid Dynamics Study. Journal of Environmental Engineering, 146(5), 04020028-1-04020028-12. DOI: https://doi.org/10.1061/(ASCE)EE.1943-7870.0001689 (in English)
Gao, H., & Stenstrom, M. K. (2020). Computational Fluid Dynamics Analysis for Improving Secondary Settling Tank Performance. Conference: World Environmental and Water Resources Congress 2020, 212-224. DOI: https://doi.org/10.1061/9780784482988.021 (in English)
Griborio, A. (2004). Secondary Clarifier Modeling: A Multi-Process Approach. Dissertation and Theses. USA, University of New Orleans Publ. (in English)
Mocanu, C. R., & Mihaillescu, R. (2012). Numerical Simulation Wastewater Treatment Aeration Processes. U. P. B. Sci. Bull., Series D, 74(2), 191-198.
Pereda M., & Zamarreno J. M. (2011). Agent–based modeling of an activated sludge process in batch reactor. 19th Mediterrian Conference on Control and Automation Aquis. 1128-1133. DOI: https://doi.org/10.1109/med.2011.5983027 (in English)
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licensing
This journal provides open access to all of its content.
As such, copyright for articles published in this journal is retained by the authors, under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0). The CC BY license permits commercial and non-commercial reuse. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project, the Directory of Open Access Journals, or the Budapest Open Access Initiative.
The CC BY 4.0 license allows users to copy, distribute and adapt the work in any way, provided that they properly point to the author. Therefore, the editorial board of the journal does not prevent from placing published materials in third-party repositories. In order to protect manuscripts from misappropriation by unscrupulous authors, reference should be made to the original version of the work.