DEVELOPMENT ANALYSIS OF MAIN DEFECTS AND THEORETICAL FORECAST OF RAIL SERVICE LIFE IN THE CONDITIONS OF LUBRICATION
DOI:
https://doi.org/10.15802/stp2020/203112Keywords:
railway transport, rail, car, wheel, contact, load, defect, lateral wear, resource, lubricationAbstract
Purpose. The study is aimed at identifying the patterns of the load influence on the rail and the parameters of the two-layer lubrication on the development of the main rail defects, namely, lateral wear in the curved track sections. Methodology. To establish the distribution of the main rail defects by type and sections of the track, expert estimates of the track service of the Azerbaijan Railway were used with respect to the results of measurements of defective parameters and rail service life on individual sections. To establish the load influence patterns and the parameters of the two-layer lubrication on the intensity of lateral wear of the rails and their service life in the curves, we used the main provisions of the contact interaction mechanics, as well as tribology and chemmotology. Findings. The authors proved: 1) the leading rail defects in the curved track sections are defects associated with low contact fatigue strength of steel, high contact stresses and friction forces along the lateral surface; 2) according to the obtained distribution, the main rail defects in the curves should include: lateral wear of the head, metal shelling along the lateral surface, transverse cracks in the head in the subsurface area; 3) the use of a two-layer lubrication leads to an increase in the actual contact area of the wheel and the rail, a decrease in the contact pressure on the rail, and in aggregate, to a decrease in lateral wear and an increase in the rail service life. Originality. The authors first systematized the results of measurements of the rail defects parameters in curves and, on this basis, obtained a distribution of the main defects depending on the curve radius. The authors improved the mathematical model for calculating the service life of rails in curves, which, unlike the existing ones, takes into account the thickness of the lubricating film and the concentration of the solid anti-friction additive in the oil when lubricating the lateral surface. Practical value. The obtained results allow us to perform predictive calculations of the rail service life in curved sections depending on the load from the wheel for different operating conditions, namely, with dry contact of the wheel with the rail and in the conditions of their two-layer lubrication. The implementation of two-layer lubrication in railway transport, taking into account the influence of the studied parameters, will lead to an increase in the rail service life in the curves by 55%, 50% and 45% with an estimated rolling stock mass of 60, 70 and 80 tons.
References
Balanovskij, A. E. (2011). Konec sistemy koleso-rel's i vnov' nachalo: monohrafiia. Irkutsk: Irkutsk State Technical University. (in Russian)
Bohdanov, V. M., & Zakharov, S. M. (2004). Sovremennye problemy sistemy koleso–rels. Zheleznye dorohi mira, 1, 57-62. (in Russian)
Voronin, S. V., & Korostelyov, J. M. (2014). The analysis of existing methods of horizontal wear reduction in «wheel-rail» friction pair on curved tracks. Railway transport information and control systems, 3, 22-27. (in Russian)
Datsyshyn, О. P., Marchenko, G. P., & Glazov, A. Y. (2017). About superficial destruction of heads of railway rails. Science and transport progress, 4(70), 41-49. DOI: https://doi.org/10.15802/stp2017/109539 (in Russian)
Klasyfikatsiia ta kataloh defektiv i poshkodzhen reiok na zaliznytsiakh Ukrainy: TsP-0285, № 050-Ts/od. (2013). Kyiv. (іn Ukrainian)
Sosnovskij, L. A. (2003). Osnovy tribofatiki. T. 1: Navchalnyi posibnyk. Gomel: Belarusian State University of Transport. (in Russian)
Fuks, G. I. (1983). Adsorbciya i smazochnaya sposobnost masel. Trenie i iznos, 4(3), 398-412. (in Russian)
Chichinadze, A. V., & Khebda, M. (1990). Spravochnik po tribotehnike. T.2 : Smazochnye materialy, tehnika smazki, opory skolzheniya i kacheniya. Moscow: Mashinostroenie. (in Russian)
Keropyan, A., & Gorbatyuk, S. (2016). Impact of Roughness of Interacting Surfaces of the Wheel-Rail Pair on the Coefficient of Friction in their Contact Area. Procedia Engineering, 150, 406-410. DOI: https://doi.org/10.1016/j.proeng.2016.06.753 (in English)
Kuziak, R., & Zygmunt, T. (2012). A New Method of Rail Head Hardening of Standard-Gauge Rails for Improved Wear and Damage Resistance. Steel Research International, 84(1), 13-19. DOI: https://doi.org/10.1002/srin.201200140 (in English)
Ma, L., He, C. G., Zhao, X. J., Guo, J., Zhu, Y., Wang, W. J., … Jin, X. S. (2016). Study on wear and rolling contact fatigue behaviors of wheel/rail materials under different slip ratio conditions. Wear, 366-367, 13-26. DOI: https://doi.org/10.1016/j.wear.2016.04.028 (in English)
Uddin, M. G., Chattopadhyay, G., & Rasul, M. (2013). Development of effective performance measures for wayside rail curve lubrication in heavy haul lines. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 228(5), 481-495. DOI: https://doi.org/10.1177/0954409713482678 (in English)
Voronin, S., Hrunyk, I., Asadov, B., & Onopreychuk, D. (2018). Study of the process of lubricant application on the friction surface using aerosol lubricators. International Journal of Engineering & Technology, 7(4.3), 20-24. DOI: https://doi.org/10.14419/ijet.v7i4.3.19546 (in English)
Voronin, S., Skoryk, O., Stefanov, V., & Onopreychuk, D. (2017). Study of the predominant defect development in rails of underground systems after preventive grinding and lubrication. MATEC Web of Conferences, 116, 1-7. DOI: https://doi.org/10.1051/matecconf/201711603005 (in English)
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licensing
This journal provides open access to all of its content.
As such, copyright for articles published in this journal is retained by the authors, under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0). The CC BY license permits commercial and non-commercial reuse. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project, the Directory of Open Access Journals, or the Budapest Open Access Initiative.
The CC BY 4.0 license allows users to copy, distribute and adapt the work in any way, provided that they properly point to the author. Therefore, the editorial board of the journal does not prevent from placing published materials in third-party repositories. In order to protect manuscripts from misappropriation by unscrupulous authors, reference should be made to the original version of the work.