THE INFLUENCE OF THE CHEMICAL COMPOSITION OF WEAR-RESISTANT CAST IRON ON THE INTERPHASE DISTRIBUTION OF MN AFTER ANNEALING AT 690°C
DOI:
https://doi.org/10.15802/stp2020/199717Keywords:
wear-resistant cast iron, annealing, manganese, metal base, carbides, distribution between phaseAbstract
Purpose. The article is aimed to obtain the regression dependences of manganese distribution between carbides and the metal base on the content of pig iron C, Cr, Mn and Ni after annealing at 690°C. Methodology. To achieve this purpose cast iron containing 1.09… 3.91% С; 11.43… 25.57% Cr; 0.6… 5.4% Mn; 0.19… 3.01% Ni and 0.8… 1.2% Si have been studied. To obtain reliable results analytical analysis of publications, microstructural and local micro-X-ray spectral methods, mathematical statistics and regression analysis of the obtained dependences were used. Findings. Using the methods of mathematical statistics, regression dependences of the manganese distribution between the phases and the magnitude of its concentration in the metallic basis of high-chromium cast iron on the content of C, Cr, Mn, and Ni after annealing at 690°C were obtained. During annealing, manganese was redistributed by replacing its atoms with chromium atoms in carbides. The effect of chromium and nickel varied significantly according to the content of manganese in cast iron. The minimum values of the manganese distribution coefficient of 0.16 were observed at the minimum carbon and manganese content and the maximum amount of chromium and nickel. The maximum concentration of manganese in the basis of 5.79% was determined with the minimum content of carbon and nickel and the maximum content of chromium and manganese. This made it possible to determine the chemical compositions of cast iron, which provide the required content of manganese in the metal base after annealing at 690°C. Originality. The regression dependences of the manganese content in the base and the coefficient of its interphase distribution on the content in cast iron of C, Cr, Mn and Ni after annealing at 690°C were obtained. Practical value. The obtained dependences of manganese distribution between phases in high-chromium cast iron after annealing at 690°C can be used during the development of the new wear resistant cast irons in the system Fe-C-Cr-Mn-Ni for castings that require heat treatment.
References
Brykov, M. N., Yefremenko, V. G., & Yefremenko, A. V. (2014). Iznosostoykost staley i chugunov pri abrazivnom iznashivanii. Herson: Grin D. S. (in Russian)
Vakulenko, I. A., & Bolshakov V. I. (2008). Morfologiya struktury i deformatsionnoye uprochneniye stali. Dnipropetrovsk: Makovetskyi. (in Russian)
Volchok, I. P., & Netrebko, V. V. (2015). Effect of alloying and heat treatment on the distribution of the elements and properties of high chrome cast iron. Scientific bulletin of DSEA, 3(18Е), 52-59. (in Russian)
Garber, M. Ye. (2010).Iznosostoykie belye chuguny. Moscow: Mashinostroenie. (in Russian)
Gudremon, E. (1966). Spetsialnyye stali. Moscow: Metallurgiya. (in Russian)
Gulyaev, A. P., & Gulyaev, A. A. (2015). Metallovedenie. Moscow: Alyans. (in Russian)
Evseeva, N. A. & Mishenko, V. G. (2017). The phase change corrosion resistant steel 03Х17Н3Г9МБДЮЧ during heating and cooling. Construction, materials science, mechanical engineering, 95, 79-81. (in Russian)
Yefremenko, V. G., & Chabak, Yu. G. (2015). Formirovanie struktury v vysokokhromistykh chugunakh: monografiya. Mariupol: PSTU. (in Russian)
Efremenko, V. G., & Chabak, Yu. G. (2016). Formirovanie struktury v vysokohromistyh: monografiya. Mariupol: PSTU. (in Russian)
Еfremenko, V. G., Cheiliakh, О. P., Kozarevska, T. V., Shimizu, K., Chabak, Y. G., & Efremenko, О. V. (2014). Phase chemical elements distribution in complex-alloyed white cast iron. Reporter of the Priazovskyi state technical university. Section: Technical sciences, 28, 89-99. (in Russian)
Kirillov, A. A., Belov, V. D., Rozhko, Y. V., Diadkova, A. Y., & Zueva, I. E. (2007). Strukturno i nestrukturno chuvstvitelnyye svoystva khromistykh chugunov. Stahl und Eisen, 9, 7-13. (in Russian)
Kutsova, V. Z., Kovzel, M. A., Hrebeneva, A. V., Ratnikova, I. V., & Shvets, P. Yu. (2016). Vplyv termichnoi obrobky na znosostiikist ta pererozpodil lehuiuchykh elementiv u strukturi chavunu 280×32n3f v protsesi znosu tertiam. Metallurgicheskaya i gornorudnaya promyshlennost, 1, 72-80. (in Ukrainian)
Malinov, L. S., & Malinov, V. L. (2014). Wear-resistant manganese steel with metastable austenite and the effect of self-hardening under loading. Metallurgical processes and equipment, 2, 16-18. (in Russian)
Netrebko, V. V., & Volchok, I. P. (2016). Influence of the cast iron's chemical composition on the interphase distribution of Mn. Science and Transport Progress, 6(66), 115-123. DOI: https://doi.org/10.15802/stp2016/90489. (in Russian)
Netrebko, V. V. (2016). About the issue of carbides Fe3C and Fe7C3 formation in high-chromium cast irons. Science and Transport Progress, 3(63), 138-147. DOI: https://doi.org/10.15802/stp2016/74736 (in Russian)
Cheylyakh, Ya., Tsurkan, M., & Cheylyakh, O. (2017). Funkcyonalnye materialy i tekhnologii s effektom samouprochneniya pri ekspluatacii i ikh ekonomicheskaya effektivnost. Metal and Casting of Ukraine, 1(284), 20-29. (in Russian)
Belikov, S., Volchok, I., & Netrebko, V. (2013). Manganese influence on chromium distribution in high-chromium cast iron. Archives of Metallurgy and Materials, 58(3), 895-897. DOI: https://doi.org/10.2478/amm-2013-0095 (in English)
Efremenko, V. G., Wu, K. M., Chabak, Y. G., Shimizu, K., Isayev, O. B., & Kudin, V. V. (2018). Alternative Heat Treatments for Complex-Alloyed High-Cr Cast Iron Before Machining. Metallurgical and Materials Transactions A, 49(8), 3430-3440 (in English). DOI: https://doi.org/10.1007/s11661-018-4722-0 (in English)
Gierek, A., & Bajka, L. (1976). Zeliwo stopowe jako tworzywo konstrukcyjne. Katowice: Slask. (in Polish)
Zhang, Y., Shimizu, K., Yaer, X., Kusumoto, K., & Efremenko, V. G. (2017). Erosive wear performance of heat treated multi-component cast iron containing Cr, V, Mn and Ni eroded by alumina spheres at elevated temperatures. Wear, 390-391, 135–145. DOI: https://doi.org/10.1016/j.wear.2017.07.017 (in English)
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licensing
This journal provides open access to all of its content.
As such, copyright for articles published in this journal is retained by the authors, under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0). The CC BY license permits commercial and non-commercial reuse. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project, the Directory of Open Access Journals, or the Budapest Open Access Initiative.
The CC BY 4.0 license allows users to copy, distribute and adapt the work in any way, provided that they properly point to the author. Therefore, the editorial board of the journal does not prevent from placing published materials in third-party repositories. In order to protect manuscripts from misappropriation by unscrupulous authors, reference should be made to the original version of the work.