Simulation and prediction of the process based on the general logistic mapping

Authors

  • V. V. Skalozub Dep. «Computer and Information Technology», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 35, e-mail skalozub_vl_v@mail.ru, Ukraine
  • V. E. Belozerov Dep. «Information Technology», Oles Gonchar Dnipropetrovsk National University, Gagarin Av., 72, Dnipropetrovsk, 49010, tel. +38 (050) 276 74 22, e-mail belozvye@mail.ru, Ukraine
  • I. V. Klimenko Dep. «Computer and Information Technology», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 35, e-mail vanya_tk@mail.ru, Ukraine
  • B. B. Belyy Dep. «Computer and Information Technology», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 35, e-mail beliyboris@mail.ru, Ukraine

DOI:

https://doi.org/10.15802/stp2013/19684

Keywords:

forecasting, generalized logistic mapping, simulation of nonlinear systems, iterated characteristics of dynamic processes

Abstract

Purpose. The aim of the research is to build a model of the generalzed logistic mapping and assessment of the possibilities of its use for the formation of the mathematical description, as well as operational forecasts of parameters of complex dynamic processes described by the time series. Methodology. The research results are obtained on the basis of mathematical modeling and simulation of nonlinear systems using the tools of chaotic dynamics. Findings. A model of the generalized logistic mapping, which is used to interpret the characteristics of dynamic processes was proposed. We consider some examples of representations of processes based on enhanced logistic mapping varying the values of model parameters. The procedures of modeling and interpretation of the data on the investigated processes, represented by the time series, as well as the operational forecasting of parameters using the generalized model of logistic mapping were proposed. Originality. The paper proposes an improved mathematical model, generalized logistic mapping, designed for the study of nonlinear discrete dynamic processes. Practical value. The carried out research using the generalized logistic mapping of railway transport processes, in particular, according to assessment of the parameters of traffic volumes, indicate the great potential of its application in practice for solving problems of analysis, modeling and forecasting complex nonlinear discrete dynamical processes. The proposed model can be used, taking into account the conditions of uncertainty, irregularity, the manifestations of the chaotic nature of the technical, economic and other processes, including the railway ones.

Author Biographies

V. V. Skalozub, Dep. «Computer and Information Technology», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 35, e-mail skalozub_vl_v@mail.ru

В. В. Скалозуб

V. E. Belozerov, Dep. «Information Technology», Oles Gonchar Dnipropetrovsk National University, Gagarin Av., 72, Dnipropetrovsk, 49010, tel. +38 (050) 276 74 22, e-mail belozvye@mail.ru

В. Е. Белозёров

I. V. Klimenko, Dep. «Computer and Information Technology», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 35, e-mail vanya_tk@mail.ru

И. В. Клименко

B. B. Belyy, Dep. «Computer and Information Technology», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 35, e-mail beliyboris@mail.ru

Б. Б. Белый

References

Bezruchko B.P., Smirnov D.A. Matematicheskoye modelirovaniye i khaoticheskiye vremennyye ryady [Mathematical modeling and chaotic time series], Saratov, Gos. UNTs «Kolledzh» Publ., 2005. 320 p.

Bosov A.A., Ilman V.M. Strukturnaya slozhnost sistem [Structural complexity of systems]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2012, issue 40, pp. 173-179.

Riznichenko G.Yu. Issledovaniya odnomernogo logisticheskogo otobrazheniya, rodstvennykh diskretnykh struktur i ikh ispolzovaniye v zadachakh dolgosrochnogo prognozirovaniya [Studies of one-dimensional logistic mapping, related discrete structures and their use in long-term forecasting tasks]. Sbornik trudov XII mezhdunarodnoy konferentsii «Matematika. Kompyuter. Obrazovaniye» [Proc. of the XII Int. Conf. «Mathematics. Computer. Education»]. Izhevsk, 2005, pp. 702-710.

Maksyshko N.K. Modeliuvannia ekonomiky metodamy dyskretnoi neliniinoi dynamiky [Economics modeling using the methods of discrete non-linear dynamics]. Zaporizhzhia, Polihraf Publ., 2009. 416 p.

Heiets V.M., Klebanova T.S., Cherniak O.I., Ivanov V.V., Dubrovina N.A., Stavytskyi A.V. Modeli i metody sotsialno-ekonomichnoho prohnozuvannia [Models and methods of social and economic forecasting]. Kharkiv, VD «INZhEK» Publ., 2005. 396 p.

Nesterenko B.B., Novotarskiy M.A. Formalnyye sredstva dlya modelirovaniya slozhnykh diskretnykh sistem [Formal means for modeling of complex discrete systems]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2007, issue 17, pp. 156-161.

Kramarenko H.A., Klymenko Y.V., Nechai A.V., Skalozub V.Vl. Pro zastosuvannia metodu prohnozuvannia na osnovi lohistychnoho vidobrazhennia dlia ekonomichnykh chasovykh riadiv iz dovhoterminovoiu pamiattiu [On the application of forecasting methods based on logistic mapping for economic historical series with long-term memory]. Tezisy dokladov V Mezhdunarodnoi nauchno-praktycheskoi konferentsii «Sovremennyye informatsyonnyye tekhnologii na transporte, v promyshlennosti i obrazovanii» [Abstracts of Papers of the V Int. Scientific and Practical Conf. «Modern information technologies on transport, in production and education»]. Dnipropetrovsk, 2011, pp. 63-65.

Donchenko A.V., Olgard L.S., Bondarev S.V., Volkov L.G. Prognozirovaniye ostatochnogo resursa khodovykh chastey podvizhnogo sostava, ischerpavshikh svoy srok [Prediction of residual operation time of the running parts for rolling stock, which have exceeded their life]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2007, issue 15, pp. 83-87.

Sergeyeva L.N., Ogarenko T.Yu. Modelirovaniye dinamiki sprosa na uslugi vysshikh uchebnykh zavedeniy na osnovanii obobshchennogo logisticheskogo otobrazheniya [Modeling of the demand dynamics for the services of higher educational establishments based on the logistic mapping]. Tezisy dokladov V Mezhdunarodnoi nauchno-prakticheskoy konferentsii «Sovremennyye problemy modelirovaniya sotsialno-ekonomicheskikh sistem» [Abstracts of Papers of the V Int. Sci. and Practical Conf. «Modern Problems of modeling of social end economic systems»]. Zaporozhye, 2010, pp. 97-100.

Sergeyeva L.N. Nelineynaya ekonomika: modeli i metody [Non-linear economics: models and methods]. Zaporozhye, Poligraf Publ., 2003. 218 p.

Skalozub V.V., Klimenko I.V Obobshchennaya model logisticheskogo otobrazheniya dlya analiza i interpretatsii svoystv vremennykh ryadov protsessov upravleniya [Generalized model of logistic mapping for analysis and interpretation of the historical series of management processes]. Tezisy dokladov nauchno-praktycheskoi konferentsii «Ekonomіchna kіbernetyka: realіi chasu» [Abstracts of Papers of Sci. and Practical Conf. «Economic Cybernetics: Time realias»]. Dnipropetrovsk, 2012, pp. 125-129.

Timokhin V.N. Metodologiya modelirovaniya ekonomicheskoy dinamiki [Modeling methodology of economic dynamics]. Donetsk, OOO «Yugo-Vostok Ltd» Publ., 2007. 269 p.

Ahmad S., Tresp V. Some Solutions to the Missing Feature Problem in Vision. Neural Information Processing Systems, 1993, no. 5, pp. 393-440.

Mandziuk J., Mikolajczak R. Chaotic time series prediction with feed-forward and recurrent neural nets. Control and Cybernetics, 2002, no. 2, pp. 383-406.

Kadirkamanathan V., Niranjan M. Nonlinear Adaptive Filtering in Nonstationary Environments. Proc. of the Int. Conf. on Acoustics, Speech and Signal Processing. Cambridge, 1991, pp. 2177-2180.

Published

2013-12-25

How to Cite

Skalozub, V. V., Belozerov, V. E., Klimenko, I. V., & Belyy, B. B. (2013). Simulation and prediction of the process based on the general logistic mapping. Science and Transport Progress, (6(48), 99–109. https://doi.org/10.15802/stp2013/19684

Issue

Section

TRANSPORT AND ECONOMIC TASKS MODELING