GONDOLA CARS DYNAMICS FROM THE ACTION OF LONGITUDINAL FORCES

Authors

DOI:

https://doi.org/10.15802/stp2019/195821

Keywords:

gondola car, dynamic indicators, curved track sections, longitudinal forces, movement speed

Abstract

Purpose. The aim of the work is to study the influence of longitudinal quasistatic tensile and compressive forces in gondola cars arising at stationary and transient modes of train movement on their main dynamic indicators and interaction indicators of rolling stock with a rail track, taking into account the possibility of speed increasing. The relevance of this study is related with the need to control the longitudinal forces arising during stationary and transient modes of train movement, with increasing speeds, masses and lengths of trains, especially freight ones, increasing the locomotives` power. Methodology. The main method for studying the dynamic loading of a gondola car on typical three-element bogies is mathematical and computer modeling of the interaction of rolling stock and track structure based on the model of spatial vibrations of freight cars` couplings. In a theoretical study, the influence of quasistatic longitudinal tensile and compressive forces is considered depending on the change in speed and the force value on the tension of 1 MN; 0.5 MN; 0 and before compression of 0.5 MN; 1 MN. Findings. As a result of theoretical studies and after modeling, taking into account the processes of oscillation of gondola cars under the action of quasistatic longitudinal forces limited by norms to ± 1MN (100 tf), the dependencies of the main parameters normalized by technical documentation are obtained taking into account the value of the movement speed. Originality. The influence of longitudinal compressive and tensile forces on the dynamic loading of a freight car is studied in order to solve the problem of forecasting the dynamics of rolling stock, taking into account the value of the speed along curved track sections. Practical value. Application of the results obtained can increase the stability of freight rolling stock and the strength of the railway track, which in turn will remove some existing restrictions on permissible speeds and increase the technical speed of trains. The obtained dependencies of the main normalized indices on the longitudinal quasistatic force will make it possible to predict the development of deviations and prevent their transformation into the dangerous ones for train movement.

Author Biography

A. O. Shvets, Dnipro National University of Railway Transport named after Academician V. Lazaryan

Dep. «Theoretical and Structural Mechanics», Dnipro National University of Railway Transport named after Academician
V. Lazaryan, Lazaryana St., 2, Dnipro, Ukraine, 49010, tel. +38 (050) 214 14 19,
e-mail angela_Shvets@ua.fm

References

Danilenko, E. I. (2010). Zaliznychna koliia: pidruchnyk dlia vyshchykh navchalnykh zakladiv. (Vol. 1-2). Kyiv: Inpres. (in Ukrainian)

Danovich, V. D., & Malysheva, A. A. (1998). Mathematical Model of Spatial Oscillations of the Coupling of Five Cars Moving Along a Rectilinear Section of the Track. Transport. Stress loading and durability of a rolling stock, 62-69. Dnepropetrovsk. (in Russian)

Danovich, V. D. (1982). Spatial Cars Oscillations in Inertia Track. (Dysertatsiia doktora tekhnichnykh nauk). Dnepropetrovsk Institute of Railway Transport Engineering, Dnеpropetrovsk. (in Russian)

Vahony vantazhni. Vymohy do mitsnosti ta dynamichnykh yakostei, 58 DSTU 33211:2017 (2017). (in Ukrai-nian)

Muginshteyn, L. A., & Romen, Yu. S. (2011). Vliyanie prodolnykh sil na opasnost skhodov porozhnikh vagonov v poezdakh. Vestnik of the Railway Research Institute, 3, 3-6. (in Russian)

Shvets, A. A., Zheleznov, K. I., Akulov, A. S., Zabolotny, A. N., & Chabanyuk, E. V. (2016). Determination the permissible forces in assessing the lift resistant factor of freight cars in trains. Science and Transport Progress, 1(61), 180-192. doi: 10.15802/stp2016/61045 (in Russian)

Blokhin, E. P., Pshinko, O. M., & Danovich, V. D. (1998). Razrabotka rekomendatsiy po snizheniyu iznosa koles i relsov za schet snizheniya sil dinamicheskogo vzaimodeystviya zheleznodorozhnykh ekipazhey i puti s uchetom statsionarnykh i nestatsionarnykh rezhi-mov dvizheniya (Vol. 1-3). Dnеpropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Dnеpropetrovsk. (in Russian)

Shvets, A. O., Bolotov, O. M., & Saparova, L. S. (2018). Influence of modes of braking on the wheel wear and stability of freight rolling stock. Visnyk sertyfikatsii zaliznychnoho transportu, 4(50), 68-82. (in Ukrainian)

Shimanovsky, A. O., & Sakharau, P. A. (2019). Effect of gap clearances in automatic coupling devices on longitudinal forces in intercar connections of homogeneous train. Mekhanika mashin, mekhanizmov i materialov, 2(47), 42-50. (in Russian)

Shimanovsky, A. O., Sakharau, P. A., & Kovalenko, A. V. (2018). Modeling of train longitudinal dynamics in MSC.ADAMS software. Aktualnye voprosy mashinovedeniya, 7, 75-78. (in Russian)

Shvets, A. A., Zhelieznov, K. I., Akulov, A. S., Zabolotnyi, A. N., & Chabaniuk, Y. V. (2015). Determination of the issue concerning the lift resistance factor of lightweight car. Science and Transport Progress, 6(60), 134-148. doi: 10.15802/stp2015/57098 (in English)

Blokhin, E. P., Pshinko, O. M., Danovich, V. D., & Korotenko, M. L. (1998). Effect of the state of car running gears and railway track on wheel and rail wear. Railway Bogies and Running Gears: Proceedings of the 4th International Conference, 313-323. Budapest. (in English)

Kurhan, D. (2016). Determination of Load for Quasi-static Calculations of Railway Track Stress-strain State. Acta Technica Jaurinensis, 9(1), 83-96. doi: 10.14513/actatechjaur.v9.n1.400 (in English)

Cole, C., Spiryagin, M., Wu, Q., & Sun, Y. Q. (2017). Modeling, simulation and applications of longitudinal train dynamics. Vehicle System Dynamics, 55(10), 1498-1571. doi: 10.1080/00423114.2017.1330484 (in English)

McKinnon, A. C. (2016). Freight Transport Deceleration: Its Possible Contribution to the Decarbonisation of Logistics. Transport Reviews, 36(4), 418-436. doi: 10.1080/01441647.2015.1137992 (in English)

Navarrete, J. A., & Otremba, F. (2016). Experimental and theoretical modeling of cargo sloshing during braking. ASME International Mechanical Engineering Congress and Exposition (Phoenix, Arizona, USA, Nov. 11-17, 2016). Dynamics, Vibration, and Control, 4B. Phoenix. doi: 10.1115/imece2016-65698 (in English)

Qi, Z., Huang, Z., & Kong, X. (2012). Simulation of longitudinal dynamics of long freight trains in positioning operations. Vehicle System Dynamics, 50(9), 1409-1433. doi: 10.1080/00423114.2012.661063 (in English)

Razinkin, N. E., Voronova, N. I., Podlesnikov, Y. D., & Danilov, S. N. (2019). The influence of additional discharge of the brake line on the longitudinal dynamics of the train during braking. Journal of Mechanical Engineering Research and Developments, 42(3), 6-9. doi: 10.26480/jmerd.03.2019.06.09

Sablin, O., Kuznetsov, V., Shinkarenko, V., & Ivanov, A. (2017). Rational distribution of excess regenerative energy in electric transport systems on the basis of fuzzy logic application. Archives of Transport, 42(2), 53-63. doi:10.5604/01.3001.0010.0527 (in English)

Shvets, A. O., & Bolotov, О. О. (2019). Influence of loads from the axis of a gondola car on its dynamic indicators and railroad tracks. Science and Transport Progress, 1(79), 151-166. doi: 10.15802/stp2019/158127 (in English)

Wu, H. (2006). Effects of wheel and rail profiles on vehicle performance. Vehicle System Dynamics, 44(sup1), 541-550. doi: 10.1080/00423110600875393 (in English)

Wu, Q., Spiryagin, M., & Cole, C. (2016). Longitudinal train dynamics: an overview. Vehicle System Dynamics, 54(12), 1688-1714. doi: 10.1080/00423114.2016.1228988 (in English)

Published

2020-02-18

How to Cite

Shvets, A. O. (2020). GONDOLA CARS DYNAMICS FROM THE ACTION OF LONGITUDINAL FORCES. Science and Transport Progress, (6(84), 142–155. https://doi.org/10.15802/stp2019/195821

Issue

Section

ROLLING STOCK AND TRAIN TRACTION