SUPPLEMENTARY LABORATORY INVESTIGATIONS OF MODERN PLASTIC-POLYMER FISHPLATES FOR RAIL JOINTS

Authors

DOI:

https://doi.org/10.15802/stp2019/195212

Keywords:

laboratory tests, glass-fibre reinforced plastic, fishplate, rail joint, glue

Abstract

Purpose. The authors’ goal is to determine the behavior of insulated rail joints with polymer-composite fishplates without glueing in the consideration of dynamic loadings regarding to own laboratory tests. In this paper they introduce the applied measurement opportunities. Methodology. Dynamic (fatigue) bending tests were performed by insulated rail joints assembled with plastic-polymer fishplates. The special laboratory measurements are related to digital picture/video measurement technique and assessment method executed by GOM hardware and software, as well as computer tomography according to laboratory bending tests. Findings. In previous papers the authors published the results of glued-insulated rail joints, in this period they continued their research with the investigation of rail joints with plastic-polymer fishplates without glueing. They tested two different types of rail fishplates made of plastic-polymer material. For the rail joints with fishplates but without glueing, the authors applied special measurement techniques by GOM products (Tritop, Aramis) that enable high precision digital measurement techniques with spectacular visualization results. The computer tomography records ensure the opportunity to be able to receive information about inner crackings and faults of plastic-polymer fishplates, with also high precision measurements. The assessment method has to be developed for these specific measurement methodologies to be able to compare the results and define scientific statements. Originality. Up to now any researcher and research group have been dealing with insulated rail joints with special plastic-polymer fishplates without glueing applied mentioned special techniques, no one determined the exact deterioration process of these joints, as well as the crack growing phenomenon in the cross section of the fishplates. Practical value. The research team of the authors had the possibility to see into the details of glass-fibre reinforced resin bonded plastic fishplates during laboratory tests, as well as they publish timely information in the consideration of their laboratory tests’ results. This result can be applied in railway engineering at all stages: design, construction, maintenance&operation in the future.

Author Biographies

A. Nemeth, Szechenyi Istvan University

Dep. «Transport Infastructure and Water Resources Engineering», Szechenyi Istvan University, Egyetem Sq., 1, Gyor, Hungary, 9026, tel. + 36 (96) 613 544, e-mail nemeth.attila@sze.hu

I. Fekete, Szechenyi Istvan University

Dep. «Materials Science and Technology», Szechenyi Istvan University, Egyetem Sq., 1, Gyor, Hungary, 9026,
tel. + 36 (96) 613 582, e-mail fekete.imre@sze.hu

S. Szalai, Szechenyi Istvan University

Dep. «Vehicle Manufacturing», Szechenyi Istvan University, Egyetem Sq., 1, Gyor, Hungary, 9026, tel. + 36 (96) 613 689,
e-mail szalaisz@sze.hu

S. Fischer, Szechenyi Istvan University

Dep. «Transport Infastructure and Water Resources Engineering», Szechenyi Istvan University, Egyetem Sq., 1, Gyor, Hungary, 9026, tel. + 36 (96) 613 544, e-mail fischersz@sze.hu

References

Kurhan, D. M. (2015). To the solution of problems about the railways calculation for strength taking into account unequal elasticity of the subrail base. Science and Transport Progress, 1(55), 90-99. doi: 10.15802/stp2015/38250 (in English)

Kurhan, M. B., Kurhan, D. M., Brazhnyk, M. Y., & Kovalskyi, D. L. (2019). Features of stress-strain state of the dual railway gauge. Science and Transport Progress, 1(79), 51-63. doi: 10.15802/stp2019/158471 (in Ukrainian)

Ágh, C. (2018). A new arrangement of accelerometers on track inspection car FMK-007 for evaluating derailment safety. Track Maintenance Machines in Theory and Practice, SETRAS 2018. Žilina. (in English)

Ágh, C. (2012). Egyenértékű kúposság mérése Magyarországon: Pálya és jármű kapcsolata – futási instabilitás. Sínek világa, 54(6), 10-13. (in Hungarian)

Ágh, C. (2018). Vágánygeometriai irány- és fekszinthibák valós nagyságának értékelése húrmérési eredmények alapján. Közlekedéstudományi szemle, 68(5), 46-55. (in Hungarian)

Ágh, C. (2017). Vasúti kerékpár futási instabilitása a pályadiagnosztika szemszögéből. Sínek világa, 59(6), 17-20. (in Hungarian)

Ágh, C. (2019). Comparative Analysis of Axlebox Accelerations in Correlation with Track Geometry Irregularities. Acta Technica Jaurinensis, 12(2), 161-177. doi: 10.14513/actatechjaur.v12.n2.501 (in English)

Allen, D. G. (2011). Evaluating The Long-Term Durability of Fiber Reinforced Polymers via Field Assessments of Reinforced Concrete Structures. Colorado State University, Fort Collins. (in English)

Jansson, J., Gustafsson, T., Salomonsson, K., Olofsson, J., Johansson, J., Appelsved, P., & Palm, M. (2018). An anisotropic non-linear material model for glass fibre reinforced plastics. Composite Structures, 195, 93-98. doi:10.1016/j.compstruct.2018.04.044 (in English)

Anjaneyulu, B., Nagamalleswara Rao, G., Prahladarao, K., & Harshavardhan, D. (2017). Analysis of Process Parameters in Milling of Glass Fibre Reinforced Plastic Composites. International Journal of Mechanical Engineering and Technology, 8(2), 149-159. (in English)

Aniskevich, A., Stankevich, S., & Sevcenko, J. (2019). Prediction method of electrical conductivity of nano-modified glass fibre reinforced plastics. IOP Conference Series: Materials Science and Engineering, 500, 1-6. doi:10.1088/1757-899x/500/1/012010 (in English)

Baskaran, G., Gowri, S., & Krishnamurthy, R. (2009). Effect of Fine Blanking on Hole Quality in Glass Fibre Reinforced Plastic Composites. Journal for Manufacturing Science and Production, 10(1), 33-41. doi: 10.1515/IJMSP.2009.10.1.33 (in English)

Batabyal, A., Nayak, R. K., & Tripathy, S. (2018). Evaluation of Mechanical Properties of Glass Fibre and Carbon Fibre Reinforced Polymer Composite. Journal of Communication Engineering & Systems, 8(2), 66-74. doi: 10.5829/ije.2018.31.07a.12 (in English)

Ryu, J., Ju, Y. K., Yoon, S. W., & Kim, S. D. (2013). Bending capacities of glass fibre reinforced plastic composite slab. Materials Research Innovations, 17(sup2), s12-s18. doi: 10.1179/1432891713Z.000000000294 (in English)

Bhattacharyya, K. K. (2014). Glass Fibre Reinforced Plastics: Information Sources. Transactions of the Indian Ceramic Society, 38(5), 200-204. doi: 10.1080/0371750X.1979.10840915 (in English)

Boerstra, G. K. (2007). The Multislope model: A new description for the fatigue strength of glass fibre reinforced plastic. International Journal of Fatigue, 29, 1571-1576. doi: 10.1016/j.ijfatigue.2006.11.007 (in English)

Bohmann, T., Schlamp, M., & Ehrlich, I. (2018). Acoustic emission of material damages in glass fibre-reinforced plastics. Composites Part B: Engineering, 155, 444-451. doi: 10.1016/j.compositesb.2018.09.018 (in English)

Chockalingam, P., & Kuang, K. C. (2013). Grindability Study on the Glass Fibre Reinforced Plastic Composite Laminates. Australian Journal of Basic and Applied Sciences, 7(11), 429-434. (in English)

Choudhury, I. A., & Chuan, P. C. (2013). Experimental evaluation of laser cut quality of glass fibre reinforced plastic composite. Optics and Lasers in Engineering, 51(10), 1125-1132. doi: 10.1016/j.optlaseng.2013.04.017 (in English)

Wang, G., Xiao, L., Nan, T., Jia, J., Xiao, H., & Zhang, D. (2017). Collective effect of bending load and hygrothermal aging on glass fibre reinforced plastic. Pigment & Resin Technology, 46(6), 469-477. doi: 10.1108/PRT-09-2016-0088 (in English)

Erki, M. A. (1995). Bolted glass-fibre-reinforced plastic joints. Canadian Journal of Civil Engineering, 22(4), 736-744. doi: 10.1139/l95-084 (in English)

Erki, M. A., Rosner, C. N., & Dutta, A. (1993). Design of Glass-Fibre-Reinforced Plastic Bolted Connections. Microcomputers in Civil Engineering, 8(5), 367-376. doi: 10.1111/j.1467-8667.1993.tb00222.x (in English)

Farshad, M., & Necola, A. (2004). Strain corrosion of glass fibre-reinforced plastics pipes. Polymer Testing, 23(5), 517-521. doi:10.1016/j.polymertesting.2003.12.003 (in English)

Fischer, Sz., & Németh, A. (2017). Investigation of polymer-composite fishplated glued insulated rail joints in laboratory, as well as in field tests for dynamic effects: Research Report. Győr: Universitas-Győr Nonprofit Ltd. (in Hungarian)

Ge, Z., Huang, M., & Wang, Y. (2014). Fatigue behaviour of asphalt concrete beams reinforced by glass fibre-reinforced plastics. International Journal of Pavement Engineering, 15(1), 36-42. doi: 10.1080/10298436.2013.799281 (in English)

Horváth, R., & Ágoston, G. (2018). The Drilling Investigation of Glass Fibre Reinforced Plastic. Műszaki Tudományos Közlemények, 9(1), 107-110. doi: 10.33894/mtk-2018.09.22 (in English)

Hou, J., & Jeronimidis G. (2012). A novel bogie design made of glass fibre reinforced plastic. Materials and Design, 37, 1-7. doi: 10.1016/j.matdes.2011.12.026 (in English)

Kishore, R. A., Tiwari, R., & Singh, I. (2009). Investigation of Drilling in [(0/90)/0] S Glass Fibre Reinforced Plastics Using Taguchi Method. Advances in Production Engineering & Management, 4(1-2), 37-46. (in English)

Krauklis, A. E., Gagani, A. I., & Echtermeyer, A. T. (2019). Long-Term Hydrolytic Degradation of the Sizing-Rich Composite Interphase. Coatings, 9(4), Paper 263, 1-24. doi: 10.3390/coatings9040263 (in English)

Líska, J., & Kodácsy, J. (2012). Drilling of Glass Fibre Reinforced Plastic. Advanced Materials Research, 472-475, 958-961. doi: 10.4028/www.scientific.net/AMR.472-475.958 (in English)

Wang, Z., Zhao, X. L., Xian, G., Wuc, G., Singh Raman, R. K., Al-Saadi, S., & Haque, A. (2017). Long-term durability of basalt- and glass-fibre reinforced polymer (BFRP/GFRP) bars in seawater and sea sand concrete environment. Construction and Building Materials, 139, 467-489. doi: 10.1016/j.conbuildmat.2017.02.038 (in English)

Uhlmann, E., Sammler, F., Richarz, S., Heitmüller, F., & Bilz, M. (2014). Machining of Carbon Fibre Reinforced Plastics. Procedia CIRP, 24, 19-24. doi: 10.1016/j.procir.2014.07.135 (in English)

Mishra, B. P., Mishra, D., & Panda, P. (2018). Drilling of glass fibre reinforced polymer / nanopolymer composite laminates: a review. International Journal of Advanced Mechanical Engineering, 8(1), 153-172. (in English)

Nagy, R. (2016). A vasúti pályageometria romlási folyamatának leírása. Sínek világa, 58(6), 12-18. (in Hungarian)

Nagy, R. (2017). Analytical differences between seven prediction models and the description of the rail track deterioration process through these methods. Intersections, 14(1), 14-32. (in English)

Nagy, R. (2017). Analytical differences between six prediction models and the description of the rail track deterioration process through these methods, Computational Civil Engineering 2017, International Symposium. Iasi. (in English)

Nagy, R. (2017). Description of rail track geometry deterioration process in Hungarian rail lines No. 1 and No. 140. Pollack Periodica, 12(3), 141-156. doi: 10.1556/606.2017.12.3.13 (in English)

Németh, A., & Fischer, Sz. (2016). A polimer-kompozit hevederes ragasztott szigetelt sínkötések (1. rész): Laboratóriumi vizsgálatok, Sínek világa, 58(6), 2-6. (in Hungarian)

Németh, A., & Fischer, Sz. (2018). A polimer-kompozit hevederes ragasztott-szigetelt sínkötések (2. rész): Vasúti pályás vizsgálatok. Sínek világa, 60, 12-17. (in Hungarian)

Németh, A., & Fischer, Sz. (2018). Field tests of glued insulated rail joints with polymer-composite and steel fishplates. In В. Horváth, G. Horváth, В. Gábor (szerk.), Technika és technológia a fenntartható közlekedés szolgálatában: Közlekedéstudományi Konferencia, 97-105. Győr: Universitas-Győr Nonprofit Kft. (in Hungarian)

Németh, А., & Fischer, Sz. (2019). Field tests of glued insulated rail joints with usage of special plastic and steel fishplates. Science and Transport Progress, 2(80), 60-76. doi: 10.15802/stp2019/165874 (in English)

Németh, A., & Fischer, Sz. (2018). Investigation of glued insulated rail joints with special fiber-glass reinforced synthetic fishplates using in continuously welded tracks. Pollack Periodica, 13(2), 77-86. doi: 10.1556/606.2018.13.2.8 (in English)

Németh, A., & Fischer, Sz. (2019). Laboratory test results of glued insulated rail joints assembled with traditional steel and fibre-glass reinforced resin-bonded fishplates. Science and Transport Progress, 3(81), 65-86. doi: 10.15802/stp2019/171781 (in English)

Németh, A., & Fischer, Sz. (2019). Polimer-kompozit hevederekkel kialakított ragasztott-szigetelt sínillesztések és kijelölt kontroll szigetelt acélhevederes illesztések vasúti pályás egyenességmérési eredményeinek kiértékelése. Alternatív-Autonóm-Kooperatív-Komparatív Mobilitás: Közlekedéstudományi Konferencia, Paper 62, 1-6. Széchenyi István Egyetem. Győr, Magyarország. (in Hungarian)

Aruniit, A., Kers, J., Goljandin, D., Saarna, M., Tall, K., Majak, J., & Herranen, H. (2011). Particulate Filled Composite Plastic Materials from Recycled Glass Fibre Reinforced Plastics. Polymers and Composites, 17(3), 276-281. doi: 10.5755/j01.ms.17.3.593 (in English)

Regenfelder, M., Faller, J., Dully, S., Perthes, H., Williams, I., den Boer, E., ... Scherhaufer, S. (2014). Recycling glass-fibre-reinforced plastics in the automotive sector. Proceedings of the Institution of Civil Engineers - Waste and Resource Management, 167(4), 169-177. doi: 10.1680/warm.13.00028 (in English)

Bielawski, R., Kowalik, M., Suprynowicz, K., Rzadkowski, W., & Pyrzanowski, P. (2017). Experimental Study on the Riveted Joints in Glass Fibre Reinforced Plastics (GFRP). Archive of Mechanical Engineering, 64(3), 301-313. doi: 10.1515/meceng-2017-0018 (in English)

Sysyn, M. P., Kovalchuk, V. V., & Jiang, D. (2018). Performance study of the inertial monitoring method for railway turnouts. International Journal of Rail Transportation, 4, 33-42. doi: 10.1080/23248378.2018.1514282 (in English)

Tate, G. S., Shaikh, A. M., & Awasare, A. D. (2017). Drilling on Glass Fiber Reinforced Composite Material for Enhancement of Drilling Quality: A Review. International Journal of Engineering Research and Technology, 10(1), 923-927. (in English)

Sysyn, M., Gerber, U., Kovalchuk, V., & Nabochenko, O. (2018). The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works. Archives of Transport, 47(3), 91-107. doi: 10.5604/01.3001.0012.6512 (in English)

Kinloch, A. J., Masania, K., Taylor, A. C., Sprenger, S., & Egan, D. (2008). The Fracture of Glass-Fibre Reinforced Epoxy Composites using Nanoparticle-Modified Matrices. Journal of Materials Science, 43, 1151-1154. doi: 10.1007/s10853-007-2390-3 (in English)

Cavusoglu, I., Cakir, M., Durakbasa, N. M., & Walcher, E. M. (2016). The Optimization of Drilling Parameters of Glass Fiber Reinforced Plastics Via Taguchi Method. The Publications of the MultiScience-XXX. MicroCAD International Scientific Conference, 1-9. doi:10.26649/musci.2016.070 (in English)

Kovalchuk, V., Sysyn, M., Sobolevska, J., Nabochenko, O., Parneta, B., & Pentsak, A. (2018). Theoretical study into efficiency of the improved longitudinal profile of frogs at railroad switches. Eastern-European Journal of Enterprise Technologies, 4/1(94), 27-36. doi: 10.15587/1729-4061.2018.139502 (in English)

Tino, S. R. L., & Aquino, E. M. F. (2014). Fracture Characteristics and Anisotropy in Notched Glass Fiber Reinforced Plastics. Materials Research, 17(6), 1610-1619. doi: 10.1590/1516-1439.302314 (in English)

Downloads

Published

2019-11-12

How to Cite

Nemeth, A., Fekete, I., Szalai, S., & Fischer, S. (2019). SUPPLEMENTARY LABORATORY INVESTIGATIONS OF MODERN PLASTIC-POLYMER FISHPLATES FOR RAIL JOINTS. Science and Transport Progress, (6(84), 86–102. https://doi.org/10.15802/stp2019/195212

Issue

Section

RAILROAD AND ROADWAY NETWORK