ANTI-TERROR ENGINEERING IN THE CASE OF POSSIBLE TERRORIST ATTACKS WITH CHEMICAL AGENTS

Authors

DOI:

https://doi.org/10.15802/stp2018/154034

Keywords:

terrorist attack, chemical air pollution of the atmosphere, anti-terror engineering, numerical simulation

Abstract

Purpose. This work aims to develop a method of local outdoor reduction of the concentration of a chemically hazardous substance, which entered the atmosphere through a cafe roof vent. It also involves the creation of a numerical model for calculating the chemical contamination zone that allows assessing the effectiveness of the screens used to minimize its level. Methodology. To solve this problem, we used the velocity potential equation that allowed to determine the air flow velocity field, and the equation of convective diffusion dispersion of a chemically hazardous agent in the atmospheric air emitted through the ventilation system in case of a terrorist attack. The simulation took into account the uneven velocity field of the wind flow, atmospheric diffusion, emission rate of a chemically hazardous agent. In the numerical integration of the velocity potential equation, we used the Liebmann method. For the numerical solution of the equation of convective diffusion dispersion of the impurity, an implicit alternate-triangular difference splitting scheme was used. Findings. The developed numerical model allowed assessing the effectiveness of building screens used to reduce the concentration of a hazardous substance and minimize the risk of toxic damage to people outdoor during an initiated emission of a chemical agent. The constructed numerical model can be implemented on computers of low and medium power, which allows it to be widely used for solving problems of the class under consideration when developing an anti-terror engineering strategy. Originality. An effective numerical model for calculating the outdoor chemical contamination zone during a possible terrorist attack using a chemical (biological) agent has been proposed. The model can also be applied to assess the effectiveness of some protective measures aimed at reducing the air pollution level during a terrorist attack. Practical value. The developed numerical model can be used to organize protective actions near social objects of a possible chemical attack by a terrorist.

Author Biographies

M. M. Biliaiev, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Dep. «Hydraulics and Water Supply», Dnipropetrovsk National University of Railway Transport named after Academician
V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010,
tel. +38 (056) 273 15 09,
e-mail water.supply.treatment@gmail.com

O. V. Berlov, Prydniprovska State Academy of Civil Engineering and Architecture

Dep. «Life Safety», Prydniprovska State Academy of Civil Engineering and Architecture, Chernyshevskogo str., 24а, 49600,
tel. +38 (056) 756-34-57 e-mail berlov@mail.pgasa.dp.ua

I. V. Kalashnikov, State Enterprise «Design and Exploration Institute of Railway Transport of Ukraine «Ukrzaliznichproekt»

State Enterprise «Design and Exploration Institute of Railway Transport of Ukraine «Ukrzaliznichproekt»,
Konarev St., 7, Kharkiv, 61052,
tel. +38 (057) 724 41 25,
e -mail uzp38@ukr.net

V. A. Kozachyna, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Dep. «Hydraulics and Water Supply», Dnipropetrovsk National University of Railway Transport named after Academician
V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010,
tel. +38 (056) 273 15 09,
e-mail v.kozachyna@gmail.com

References

Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk. Analiz i otsenka: Uchebebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)

Belyaev, N. N., Gunko, Y. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)

Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka. (in Russian)

Belyaev, N. N., Gunko, Y. Y., Kirichenko, P. S., & Muntyan, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoi Rog: Kozlov R. A. (in Russian).

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Belyaev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kуiv: Naukova dumka. (in Russian)

Barret, A. M. (2009). Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectiveness. (Dissertation of Doctor of Philosophy). Carnegie Mellon University, Pittsburg. (in English)

Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Science and Transport Progress, 1(61), 48-54. doi: 10.15802/stp2016/60953 (in English)

Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security, 87-91. doi: 10.1007/978-94-007-1359-8_15 (in English)

CEFIC Guidance on safety Risk Assessment for Chemical Transport Operations. Croner-i. Retrived from https://app.croneri.co.uk/news/cefic-guidance-safety-risk-assessment-chemical-transport-operations?product=139 (in English)

Tumanov, A., Gumenyuk, V., & Tumanov, V. (2017). Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility. IOP Conf. Series: Earth and Environmental Science, 90. doi: 10.1088/1755-1315/90/1/012027 (in English)

Zahra Naserzadeh, Farideh Atabi, Faramarz Moattar, & Naser Moharram Nejad. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communication, 10(1), 192-204. (in English)

Cao, C., Li, C., Yang, Q., & Zhang, F. (2017). Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain. Sustainability, 9(11). doi: 10.3390/su9112103 (in English)

Government of Alberta. (2017). Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrived from http://open.alberta.ca/publications/9781460131213 (in English)

Ondrej Zavila, Pavel Dobes, Jakub Dlabka, & Jan Bitta. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. The Science for Population Protection, 2. (in English)

Published

2019-01-10

How to Cite

Biliaiev, M. M., Berlov, O. V., Kalashnikov, I. V., & Kozachyna, V. A. (2019). ANTI-TERROR ENGINEERING IN THE CASE OF POSSIBLE TERRORIST ATTACKS WITH CHEMICAL AGENTS. Science and Transport Progress, (6(78), 28–36. https://doi.org/10.15802/stp2018/154034

Issue

Section

ECOLOGY AND INDUSTRIAL SAFETY