ANTI-TERROR ENGINEERING IN THE CASE OF POSSIBLE TERRORIST ATTACKS WITH CHEMICAL AGENTS
DOI:
https://doi.org/10.15802/stp2018/154034Keywords:
terrorist attack, chemical air pollution of the atmosphere, anti-terror engineering, numerical simulationAbstract
Purpose. This work aims to develop a method of local outdoor reduction of the concentration of a chemically hazardous substance, which entered the atmosphere through a cafe roof vent. It also involves the creation of a numerical model for calculating the chemical contamination zone that allows assessing the effectiveness of the screens used to minimize its level. Methodology. To solve this problem, we used the velocity potential equation that allowed to determine the air flow velocity field, and the equation of convective diffusion dispersion of a chemically hazardous agent in the atmospheric air emitted through the ventilation system in case of a terrorist attack. The simulation took into account the uneven velocity field of the wind flow, atmospheric diffusion, emission rate of a chemically hazardous agent. In the numerical integration of the velocity potential equation, we used the Liebmann method. For the numerical solution of the equation of convective diffusion dispersion of the impurity, an implicit alternate-triangular difference splitting scheme was used. Findings. The developed numerical model allowed assessing the effectiveness of building screens used to reduce the concentration of a hazardous substance and minimize the risk of toxic damage to people outdoor during an initiated emission of a chemical agent. The constructed numerical model can be implemented on computers of low and medium power, which allows it to be widely used for solving problems of the class under consideration when developing an anti-terror engineering strategy. Originality. An effective numerical model for calculating the outdoor chemical contamination zone during a possible terrorist attack using a chemical (biological) agent has been proposed. The model can also be applied to assess the effectiveness of some protective measures aimed at reducing the air pollution level during a terrorist attack. Practical value. The developed numerical model can be used to organize protective actions near social objects of a possible chemical attack by a terrorist.
References
Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk. Analiz i otsenka: Uchebebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)
Belyaev, N. N., Gunko, Y. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)
Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka. (in Russian)
Belyaev, N. N., Gunko, Y. Y., Kirichenko, P. S., & Muntyan, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoi Rog: Kozlov R. A. (in Russian).
Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Belyaev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kуiv: Naukova dumka. (in Russian)
Barret, A. M. (2009). Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectiveness. (Dissertation of Doctor of Philosophy). Carnegie Mellon University, Pittsburg. (in English)
Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Science and Transport Progress, 1(61), 48-54. doi: 10.15802/stp2016/60953 (in English)
Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security, 87-91. doi: 10.1007/978-94-007-1359-8_15 (in English)
CEFIC Guidance on safety Risk Assessment for Chemical Transport Operations. Croner-i. Retrived from https://app.croneri.co.uk/news/cefic-guidance-safety-risk-assessment-chemical-transport-operations?product=139 (in English)
Tumanov, A., Gumenyuk, V., & Tumanov, V. (2017). Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility. IOP Conf. Series: Earth and Environmental Science, 90. doi: 10.1088/1755-1315/90/1/012027 (in English)
Zahra Naserzadeh, Farideh Atabi, Faramarz Moattar, & Naser Moharram Nejad. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communication, 10(1), 192-204. (in English)
Cao, C., Li, C., Yang, Q., & Zhang, F. (2017). Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain. Sustainability, 9(11). doi: 10.3390/su9112103 (in English)
Government of Alberta. (2017). Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrived from http://open.alberta.ca/publications/9781460131213 (in English)
Ondrej Zavila, Pavel Dobes, Jakub Dlabka, & Jan Bitta. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. The Science for Population Protection, 2. (in English)
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licensing
This journal provides open access to all of its content.
As such, copyright for articles published in this journal is retained by the authors, under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0). The CC BY license permits commercial and non-commercial reuse. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project, the Directory of Open Access Journals, or the Budapest Open Access Initiative.
The CC BY 4.0 license allows users to copy, distribute and adapt the work in any way, provided that they properly point to the author. Therefore, the editorial board of the journal does not prevent from placing published materials in third-party repositories. In order to protect manuscripts from misappropriation by unscrupulous authors, reference should be made to the original version of the work.