CALCULATION OF «VULNERABILITY» ZONE IN CASE OF TERRORIST ATTACK WITH CHEMICAL AGENTS
DOI:
https://doi.org/10.15802/stp2018/146437Keywords:
terrorist attack, chemical pollution, «vulnerability» zone, adjoint equation, numerical simulation, air contaminationAbstract
Purpose. The work involves the development of a numerical model for calculating the «vulnerability» zone of a possible terrorist attack objective with the use of a chemical agent in a built-up environment. The «vulnerability» zone is a territory near the attack objective, where the emission of a chemical agent during the attack will lead to undesirable consequences. The emission of a chemical agent outside the «vulnerability» zone will not create a dangerous concentration near the attack objective. Methodology. To solve this problem, we use the equation for the velocity potential, on the basis of which we determine the wind stream velocity field, and the equation adjoint to the equation of mass transfer in the atmospheric air of the chemical agent emitted in the event of a terrorist attack. During simulation, we take into account the uneven wind stream velocity field, atmospheric diffusion and the rate of emission of a chemically hazardous substance. For the numerical integration of the velocity potential equation, we use the method of A. A. Samarsky. For numerical solution of the adjoint equation, we introduce new variables and use an implicit difference splitting scheme. The peculiarity of the developed numerical model is the possibility of operative estimation of the «vulnerability» zone near a possible attack objective. Findings. The developed numerical model and computer program can be used for scientifically grounded assessment of the «vulnerability» zone near significant facilities in the event of possible attacks with the use of chemical (biological) agents. The constructed numerical model can be implemented on computers of small and medium power, which allows it to be widely used to solve the problems of this class when developing the emergency response plan. The results of the computational experiment are presented, which allow us to evaluate the possibilities of the proposed numerical model. Originality. An effective numerical model is proposed for calculating the «vulnerability» zone near the facility, which may be the target of a terrorist attack with the use of a chemical agent. The model is based on the numerical integration of the velocity potential equation and the equation adjoint to the equation of mass transfer of a chemically dangerous substance in the atmosphere. Practical value. The developed model can be used to organize protective actions near the target facility of a possible chemical attack by terrorists.
References
Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk. Analiz i otsenka: Uchebebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)
Belyaev, N. N., Gunko, Y. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)
Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka. (in Russian)
Belyaev, N. N., Gunko, Y. Y., Kirichenko, P. S., & Muntyan, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoi Rog: Kozlov R. A. (in Russian)
Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Belyaev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kуiv: Naukova dumka. (in Russian)
Barret, A. M. (2009). Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectiveness. (Dissertation of Doctor of Philosophy). Carnegie Mellon University, Pittsburg. (in English)
Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Science and Transport Progress, 1(61), 48-54. doi: 10.15802/stp2016/60953 (in English)
Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security, 87-91. doi: 10.1007/978-94-007-1359-8_15 (in English)
CEFIC Guidance on safety Risk Assessment for Chemical Transport Operations. Retrived from https://app.croneri.co.uk/news/cefic-guidance-safety-risk-assessment-chemical-transport-operations?product=139 (in English)
Tumanov, A., Gumenyuk, V., & Tumanov, V. (2017). Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility. IOP Conf. Series: Earth and Environmental Science, 90. doi: 10.1088/1755-1315/90/1/012027 (in English)
Zahra Naserzadeh, Farideh Atabi, Faramarz Moattar, & Naser Moharram Nejad. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communication, 10(1), 192-204. (in English)
Cao, C., Li, C., Yang, Q., & Zhang, F. (2017). Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain. Sustainability, 9(11). doi: 10.3390/su9112103 (in English)
Government of Alberta. Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrived from http://open.alberta.ca/publications/9781460131213 (in English)
Ondrej Zavila, Pavel Dobes, Jakub Dlabka, & Jan Bitta. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. Bezpecnostni vyzkum. The Science for Population Protection, 2. (in English)
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licensing
This journal provides open access to all of its content.
As such, copyright for articles published in this journal is retained by the authors, under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0). The CC BY license permits commercial and non-commercial reuse. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project, the Directory of Open Access Journals, or the Budapest Open Access Initiative.
The CC BY 4.0 license allows users to copy, distribute and adapt the work in any way, provided that they properly point to the author. Therefore, the editorial board of the journal does not prevent from placing published materials in third-party repositories. In order to protect manuscripts from misappropriation by unscrupulous authors, reference should be made to the original version of the work.