Synthesis of optimal digital controller of flocculant dosing

Authors

  • A. V. Pismenskiy Dep. "Systems Engineering" East Ukrainian National University named after Volodymyr Dahl, Ukraine

DOI:

https://doi.org/10.15802/stp2013/14549

Keywords:

flocculant, the optimal digital controller, the quantization period, dynamic programming, Bellman differential equation, the algebraic Riccati equation, the normal form of Cauchy

Abstract

Purpose. The task of automatic process control of the slime water thickening and flotation tailings clarification is the stabilization of thicken product density within the given range and keeping up the solids content in the overflow not above the permissible level with minimum use of the flocculants. In existing systems for automatic control the flocculant dosing is carried out according to the solids content in the device input (the principle of open-loop control). This leads to the excess consumption of the flocculants and increase the dispersion density of the overflow. To perform the synthesis of the optimal digital controller in order to minimize the deviations from the master control and ensure the specified quality of the transition process. Over controlling value should not exceed 5 %. To perform the system operation modeling in order to determine the quality of transient processes. Methodology. Synthesis of the optimal digital controller is based on the method of dynamic programming. Findings. A mathematical model of the object control is represented in the normal form of Cauchy and further in the form of differential equations. The optimum period of quantization as the function from specified error of control and the output coordinate change is calculated. The differential equation of Bellman is obtained and the condition for minimization of the quality functional. Bellman function is represented as a quadratic form from the variables of the system condition. In order to limit possible control, the weight coefficients of the functional are calculated based on maximum permitted values of the system condition variables and the control actions during the transient process. Practical value. Using the modeling of ACS of the flocculant dosing it was established that the over controlling amount is 3.5%, the transient process life 5.6 sec, the transient process is aperiodical, non-static control, which meets the requirements imposed on the ACS.

Author Biography

A. V. Pismenskiy, Dep. "Systems Engineering" East Ukrainian National University named after Volodymyr Dahl

Molodizhnyi Quarter, 20 a, Luhansk, 91034, Ukraine, tel. +38 (0642) 47 14 44, e-mail uni@snu.edu.ua, official site www.snu.edu.ua

 

References

Zubov D.A. Avtomatychne keruvannia tekhnolohichnymy protsesamy vuhlezbahachuvalnoi fabryky [Automatic control by the process of coal preparation plants]. Luhansk, Vyd-vo Skhidnoukr. nats. un-tu im. V. Dalia Publ., 2003. 172 p.

Makarov Ye.G. Inzhenernyye raschety v Mfthcad [Engineering calculations in Mfthcad]. Saint Petersburg, Piter Publ., 2010. 448 p.

Olsson Gustav, Piani Dzhanguido. Tsifrovyye sistemy avtomatizatsii i upravleniya [Digital automation and control systems]. Saint Petersburg, Nevskiy dialect Publ., 2001. 557 p.

Pelekh R.Ya., Luchko Y.Y. Dvostoronni obchysliuvalni skhemy rozviazuvannia neliniinykh dyferentsialnykh rivnian z otsinkoiu holovnoho chlena pokhybky [Bilateral computational schemes for solving nonlinear differential equations with principal term evaluation of error]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University named after Academician V. Lazaryan], 2011, issue 39, pp. 123-125.

Pelekh Ya.M. Metody vysokoho poriadku tochnosti rozviazuvannia zadachi Koshi dlia neliniinykh intehro-dyferentsialnykh rivnian Voltera [The methods of high order of accuracy for solving the Cauchy problem for nonlinear integro-differential equations Voltaire]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University named after Academician V. Lazaryan], 2011, issue 39, pp. 126-130.

Pismenskiy A.V., Ulshin V.A. Opredeleniye dopustimogo perioda diskretizatsii dlya predstavleniya parametricheskoy modeli radialnogo sgustitelya shlamovykh vod v prostranstve sostoyaniy [Permissible period determination of discretization for the presentation of parametric model of radial thickener of slime water states space]. Pratsі Luhanskoho vіddіlennia Mіzhnarodnoi Akademіi іnformatyzatsіi – Proceedings of Lugansk Department of International Academy of Informatization, 2002, no. 1, pp. 41-45.

Poluliakh O.D. Tekhnolohichni rehlamenty vuhlezbahachuvalnykh fabryk [Process regulations of the coal preparation plants]. Dnipropetrovsk, Natsionalnyi hirnychyi universytet Publ., 2002. 856 p.

Polyakov K.Yu. Osnovy teorii tsifrovykh sistem upravleniya [The basic theory of digital control systems]. Saint Petersburg, Piter Publ., 2006. 161 p.

Romanenko V.D. Metody avtomatyzatsii prohresyvnykh tekhnolohii [Methods of automatization of advanced technologies]. Kyiv, Vyshcha shkola Publ., 1995. 519 p.

Sharuda V.H. Praktykum z teorii avtomatychnoho upravlinnia [Practical on automatic control theory]. Dnipropetrovsk, Natsionalna hirnycha akademiia Ukrainy Publ., 2002. 414 p.

Famularo D., Pugliese P., Sergeyev Ya.D. A global optimization technique for fixed-order control design. International Journal of Systems Science, 2004, vol. 35 (7), pp. 425-434.

Grachov O. Enrichability curves analysis of several coals mixture. TEKA. Commision of motorization and energetics in agriculture, 2012, vol. 12, no. 4, pp. 64-70.

Dale E. Seborg,. Duncan A. Mellichamp, Thomas F. Edgar, Francis J. Doyle. Process Dynamics and Control. New York, John Wiley & Sons Publ., 2010. 528 p.

Published

2013-06-25

How to Cite

Pismenskiy, A. V. (2013). Synthesis of optimal digital controller of flocculant dosing. Science and Transport Progress, (3(45), 111–118. https://doi.org/10.15802/stp2013/14549

Issue

Section

TRANSPORT AND ECONOMIC TASKS MODELING