Features of the high frequency power transformer calculation

Authors

  • D. A. Zabarilo Dep. «Electric rolling stock of railways», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Ukraine

DOI:

https://doi.org/10.15802/stp2013/14535

Keywords:

single-phase bridge voltage inverter, high voltage transformer, short-circuit voltage, transient process, time constant

Abstract

Purpose. The windings of power transformers have low resistance value and a most inductance, which reduces the rate of rise of current in the windings. Therefore, when the estimated amount of current is set one should make sure of the possibility of achieving it. As inductance is characterized by a short-circuit voltage, it is necessary to develop a technique for determining the maximum magnitude of the current in the windings of the transformer according to the short-circuit voltage and operating frequency. Methodology. The classical method of calculation of transient processes to determine the value of the transient current of the transformer windings to achieve purpose is used. Findings. The nature of the transient current in the windings of high-frequency transformer, which is powered by a voltage inverter is investigated and analyzed. Originality. The method for determining the maximum amount of current depending on the short-circuit voltage and frequency of the applied voltage with other set-up parameters was proposed. Practical value. The proposed method allows determining the maximum value of the current in the windings of the high-frequency transformer including its RL-parameters. This will let compare the value of a given current with possible depending on short-circuit voltage and frequency of the applied voltage. Research material may be applied for power transformers design.

Author Biography

D. A. Zabarilo, Dep. «Electric rolling stock of railways», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Lazaryan Str. 2, 49010, Dnipropetrovsk, Ukraine, tel.+38 (056) 373 15 04, e-mail  lazbl@yandex.ru

References

Amorfnyye splavy i ekonomiya (Amorphous alloys and economy). Available at: http://forca.ru/stati/podstancii/amorfnye-splavy-i-ekonomiya.html (Accessed 03 June 2013).

Visin M.H., Zabarylo D.O. Shestyvisnyi mahistralnyi vantazhnyi elektrovoz podviinoho zhyvlennia iz zastosuvanniam promizhnoho transformatora z vysokochastotnoiu rozviazkoiu i z asynkhronnymy tiahovymy dvyhunamy [Six axel mainline freight double feed electric locomotive using the transformer with high-frequency junction and asynchronous tractive motors]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2011, issue 36, pp. 132-136.

Visin M.H., Zabarylo D.O. Pidvyshchennia elektromahnitnoi sumisnosti reikovykh kil z elektrorukhomym skladom podviinoho zhyvlennia z asynkhronnymy tiahovymy dvyhunamy ta tiahovoiu merezheiu [Improving of electromagnetic compatibility of rail circuits with double feed electric rolling stock with asynchronous tractive motors and with power supply system]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2012, issue 40, pp. 75-82.

Voldek A.I. Elektricheskiye mashyny [Electrical machines]. Lvov, Energyia Publ., 1978. 832 p.

Gottlib I.M. Istochniki pitaniya. Invertory, konvertory, lineynyye i impulsnyye stabilizatory [Sources of supply. Inverters, converters, linear and switching regulators]. Moscow, Postmarket Publ., 2002. 544 p.

Zabrodin Yu.S. Promyshlennaya elektronika [Industrial electronics]. Moscow, Vysshaya shkola Publ., 1982. 496 p.

Zolotukhin I.V. Fizicheskiye svoystva amorfnykh metallicheskikh splavov [The physical properties of amorphous metallic alloys]. Moscow, Metallurgiya Publ., 1986. 175 p.

Kopylov I.P. Elektricheskiye mashiny [Electrical machines]. Moscow, Energoatomizdat Publ., 1986. 256 p.

Kulik V.D. Silovaya elektronika. Avtonomnyye invertory, aktivnyye preobrazovateli [Power electronics. Autonomous inverters, active transducers]. Saint Petersburg, GOUVPO SPbGTURP Publ., 2010. 90 p.

Mek R. Impulsnyye istochniki pitaniya. Teoreticheskiye osnovy proyektirovaniya i rukovodstvo po prakticheskomu primeneniyu [Switching power supplies. Design Theory and guidance on the practical application]. Moscow, Izdatelskiy dom «Dodeka-KhKhІ» Publ., 2008. 272 p.

Starodubtsev Yu.N., Belozerov V.Ya. Magnitnyye svoystva amorfnykh i nanokristallicheskikh splavov [Magnetic properties of amorphous and nanocrystalline alloys]. Yekaterinburg, Uralskiy Universitet Publ., 2002. 186 p.

Zeveke G.V., Ionkin P.A., Netushil A.V, Strakhov S.V. Osnovy teorii tsepey [Basics of circuit theory]. Moscow, Energoatomizdat Publ., 1989. 528 p.

Kunz M., Hörl F., Klockw Th. Entvicklung einer massearmen Energieversongung für elektrische Triebfahrzeuge. ZEV, DET Glassers Annalen, Die Eisenbahntechnik, 1999, vol. 123, no. 11,12. p. 423-426.

Liu Y., Eberle W. Developments in Switching Mode Supply Technologies. IEEE Canadian Re-view. Switching Mode Power Supplies, 2009. no. 61, pp. 9-14.

Victor M. Energieumwandlung aut AC-Triebfarzeugen mit Mittle frequen ztansformator. EB: Elekrtische Bahnen, 2005, vol. 103, no. 11, pp. 505-510.

Published

2013-06-25

How to Cite

Zabarilo, D. A. (2013). Features of the high frequency power transformer calculation. Science and Transport Progress, (3(45), 29–35. https://doi.org/10.15802/stp2013/14535

Issue

Section

ELECTRIC TRANSPORT, POWER SYSTEMS AND COMPLEXES