DEFINITION OF «SAFETY BOUNDARY» IN CASE OF TERRORIST ATTACK WITH CHEMICAL AGENTS

Authors

DOI:

https://doi.org/10.15802/stp2018/141006

Keywords:

terrorist attack, chemical pollution, conjugated equation, numerical model, air pollution

Abstract

Purpose. The work involves the development of a 2D numerical model for calculating the «safety boundary» in the case of a terrorist attack using a chemical agent. The safety boundary is the boundary behind which the emission of a dangerous substance in a terrorist act will lead to undesirable consequences at the site of the attack object. Methodology. To solve this problem, we used an equation conjugated with the equation of mass transfer in the atmospheric air of a chemical agent ejected in the case of a terrorist attack. The simulation takes into account the field of wind speed, atmospheric diffusion, the release intensity of a hazardous substance. For numerical integration of the modeling conjugated equation, new variables are introduced and an implicit difference splitting scheme is applied. A feature of the developed numerical model is the ability to quickly assess the position of the safety boundary near a possible object of attack. Findings. The developed numerical model and computer program can be used for a scientifically grounded assessment of the safety boundary position near significant objects in the event of possible terrorist attacks using chemical (biological) agents. The constructed numerical model can be implemented on computers of small and medium power, which makes it possible to widely use it to solve the problems of the considered class, when developing an emergency response plan. The results of a computational experiment are presented that allow one to evaluate the possibilities of the proposed method for calculating the position of the safety boundary in the case of a terrorist attack using a chemical agent. Originality. An effective method for calculating the position of the safety boundary near the facility, which may be the target of a terrorist attack using a chemically hazardous substance, is proposed. The method is based on the numerical integration of the equation, which is conjugated to the equation of mass transfer of chemically hazardous substances in the atmospheric air. Practical value. The proposed method for calculating the position of the safety boundary near the facility, which may be the target of a terrorist attack using a chemically hazardous substance, can be used to organize protective measures aimed at minimizing the consequences of terrorist attacks.

Author Biographies

M. M. Biliaiev, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Dep. «Hydraulics and Water Supply», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 273 15 09,
Email: water.supply.treatment@gmail.com

I. V. Kalashnikov, State Enterprise «Design and Exploration Institute of Railway Transport of Ukraine «Ukrzaliznichproekt»

State Enterprise «Design and Exploration Institute of Railway Transport of Ukraine «Ukrzaliznichproekt»,
Konarev St., 7, Kharkiv, 61052,
tel. +38 (057) 724 41 25,
Email: uzp38@ukr.net

V. A. Kozachyna, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Dep. «Hydraulics and Water Supply», Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 273 15 09,
Email: v.kozachyna@gmail.com

References

Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk. Analiz i otsenka: Uchebebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)

Belyaev, N. N., Gunko, Y. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)

Marchuk G.I. Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy [Mathematical modeling in the environmental problem]. Moscow, Nauka Publ., 1982. 320 p. (in Russian)

Belyaev, N. N., Gunko, Y. Y., Kirichenko, P. S., & Muntyan, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoi Rog: Kozlov R. A. (in Russian)

Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Belyaev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kiev: Naukova dumka. (in Russian)

Barret, A. M. (2009). Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectivness. (Dissertation of Doctor of Philosophy). Carnegie Mellon University, Pittsburg, Pennsylvania, USA. (in English)

Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Science and Transport Progress, 1(61), 48-54. doi: 10.15802/stp2016/60953 (in English)

Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security. doi: 10.1007/978-94-007-1359-8_15 (in English)

Cefic Guidance on safety Risk Assessment for Chemical Transport Operations J Verlinden. (n.d.). Retrived from http://www.era.europa.eu/DocumentRegister/Documents/Cefic%20guidance%20on%20risk%20assessment.pdf (in English)

Tumanov, A., Gumenyuk, V., & Tumanov, V. (2017). Development of advanced mathema-tical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility. IOP Conf. Series: Earth and Environmental Science, 90, 1-11. doi: 10.1088/1755-1315/90/1/012027 (in English)

Zahra Naserzadeh, Farideh Atabi, Faramarz Moattar, & Naser Moharram Nejad. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communication, 10(1), 192-204. (in English)

Cao, C., Li, C., Yang, Q. & Zhang, F. (2017). Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain. Sustainability, 9(11), 2103. doi: 10.3390/su9112103 (in English)

Government of Alberta. Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrived from http://open.alberta.ca/publications/9781460131213 (in English)

Ondrej Zavila, Pavel Dobes, Jakub Dlabka, & Jan Bitta. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. Bezpecnostni vyzkum. The Science for Population Protection, 2, 1-9. (in English)

Published

2018-08-23

How to Cite

Biliaiev, M. M., Kalashnikov, I. V., & Kozachyna, V. A. (2018). DEFINITION OF «SAFETY BOUNDARY» IN CASE OF TERRORIST ATTACK WITH CHEMICAL AGENTS. Science and Transport Progress, (4(76), 7–14. https://doi.org/10.15802/stp2018/141006

Issue

Section

ECOLOGY AND INDUSTRIAL SAFETY