DEFINITION OF «SAFETY BOUNDARY» IN CASE OF TERRORIST ATTACK WITH CHEMICAL AGENTS
DOI:
https://doi.org/10.15802/stp2018/141006Keywords:
terrorist attack, chemical pollution, conjugated equation, numerical model, air pollutionAbstract
Purpose. The work involves the development of a 2D numerical model for calculating the «safety boundary» in the case of a terrorist attack using a chemical agent. The safety boundary is the boundary behind which the emission of a dangerous substance in a terrorist act will lead to undesirable consequences at the site of the attack object. Methodology. To solve this problem, we used an equation conjugated with the equation of mass transfer in the atmospheric air of a chemical agent ejected in the case of a terrorist attack. The simulation takes into account the field of wind speed, atmospheric diffusion, the release intensity of a hazardous substance. For numerical integration of the modeling conjugated equation, new variables are introduced and an implicit difference splitting scheme is applied. A feature of the developed numerical model is the ability to quickly assess the position of the safety boundary near a possible object of attack. Findings. The developed numerical model and computer program can be used for a scientifically grounded assessment of the safety boundary position near significant objects in the event of possible terrorist attacks using chemical (biological) agents. The constructed numerical model can be implemented on computers of small and medium power, which makes it possible to widely use it to solve the problems of the considered class, when developing an emergency response plan. The results of a computational experiment are presented that allow one to evaluate the possibilities of the proposed method for calculating the position of the safety boundary in the case of a terrorist attack using a chemical agent. Originality. An effective method for calculating the position of the safety boundary near the facility, which may be the target of a terrorist attack using a chemically hazardous substance, is proposed. The method is based on the numerical integration of the equation, which is conjugated to the equation of mass transfer of chemically hazardous substances in the atmospheric air. Practical value. The proposed method for calculating the position of the safety boundary near the facility, which may be the target of a terrorist attack using a chemically hazardous substance, can be used to organize protective measures aimed at minimizing the consequences of terrorist attacks.
References
Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk. Analiz i otsenka: Uchebebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)
Belyaev, N. N., Gunko, Y. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)
Marchuk G.I. Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy [Mathematical modeling in the environmental problem]. Moscow, Nauka Publ., 1982. 320 p. (in Russian)
Belyaev, N. N., Gunko, Y. Y., Kirichenko, P. S., & Muntyan, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoi Rog: Kozlov R. A. (in Russian)
Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Belyaev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kiev: Naukova dumka. (in Russian)
Barret, A. M. (2009). Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectivness. (Dissertation of Doctor of Philosophy). Carnegie Mellon University, Pittsburg, Pennsylvania, USA. (in English)
Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Science and Transport Progress, 1(61), 48-54. doi: 10.15802/stp2016/60953 (in English)
Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security. doi: 10.1007/978-94-007-1359-8_15 (in English)
Cefic Guidance on safety Risk Assessment for Chemical Transport Operations J Verlinden. (n.d.). Retrived from http://www.era.europa.eu/DocumentRegister/Documents/Cefic%20guidance%20on%20risk%20assessment.pdf (in English)
Tumanov, A., Gumenyuk, V., & Tumanov, V. (2017). Development of advanced mathema-tical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility. IOP Conf. Series: Earth and Environmental Science, 90, 1-11. doi: 10.1088/1755-1315/90/1/012027 (in English)
Zahra Naserzadeh, Farideh Atabi, Faramarz Moattar, & Naser Moharram Nejad. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communication, 10(1), 192-204. (in English)
Cao, C., Li, C., Yang, Q. & Zhang, F. (2017). Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain. Sustainability, 9(11), 2103. doi: 10.3390/su9112103 (in English)
Government of Alberta. Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrived from http://open.alberta.ca/publications/9781460131213 (in English)
Ondrej Zavila, Pavel Dobes, Jakub Dlabka, & Jan Bitta. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. Bezpecnostni vyzkum. The Science for Population Protection, 2, 1-9. (in English)
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licensing
This journal provides open access to all of its content.
As such, copyright for articles published in this journal is retained by the authors, under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0). The CC BY license permits commercial and non-commercial reuse. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project, the Directory of Open Access Journals, or the Budapest Open Access Initiative.
The CC BY 4.0 license allows users to copy, distribute and adapt the work in any way, provided that they properly point to the author. Therefore, the editorial board of the journal does not prevent from placing published materials in third-party repositories. In order to protect manuscripts from misappropriation by unscrupulous authors, reference should be made to the original version of the work.