WATER CLEANING FROM RESIDUES OF MEDICINAL PREPARATIONS
DOI:
https://doi.org/10.15802/stp2018/134675Keywords:
water pollution with medicinal preparations, basic medications-pollutants, methods of water cleaning from medicinesAbstract
Purpose. The paper aimed at analyzing the presence of residual quantities of medicinal preparations in the water of Ukraine and the world. Based on the world and own experience to propose methods for waters cleaning from medicines. Methodology. The research was carried out on the basis of analysis of scientific sources and reporting data on the availability of medicines in the water of Ukraine, European countries, the USA (1999-2017). Findings. Analyzed sources inform that the main environmental threat of a global scale is the presence of medicines in drinking water. The treatment facilities are not suitable for the detection and decomposition of medicinal preparations. The fight against these substances is not envisaged all over the world. The authors present the results of a comprehensive review of issues related to the determination of the medicines availability in various waters, their concentrations and the most dangerous medicinal preparations - toxicants. Medications can be accumulated not only in the body of humans and animals, but also in marine and river fish, etc. The impact of even trace amounts of certain medicines (drugs, hormones) can have a negative effect on the health of more vulnerable segments of population, such as children. It was found that the main culprit of hormonal water pollution is agriculture, namely animal husbandry. Originality. The paper summarizes available and presents new methods and technologies for water cleaning, such as: electrochemical, membrane, adsorption based on activated carbon, ultrasonic treatment in the presence of catalysts, treatment of water with enzymes and persulfates. As the second way to reduce the number of medicines in the water, it is proposed to produce environmentally friendly medicines. Practical value. Water problems are the main ones all over the world and in Ukraine as well. It is necessary to provide the additional financing to solve the problem of water cleaning from medicines not on a residual principle, but considering that water is the basis of life on the Earth, and in general the health and life of mankind depends on the quality of water.
References
Andryushchenko, Y. (2017). Lekarstva travyat pityevuyu vodu. Dnepr vecherniy, 49(13211), 23. Retrived from http://dv-gazeta.info/vechyorka/zdorovje/lekarstva-travyat-pitevuyu-vodu.htm (in Russian)
Bakterii obzavelis immunitetom (2014). Sankt-Peterburgskie Vedomosti, October 16. Retrieved from: https://spbvedomosti.ru/news/obshchestvo/bakterii_obzavelis_immunitetom/ (in Russian)
Barenboym, G. M., & CHiganova, M. A. (2015). Zagryazneniye prirodnykh vod lekarstvami. Moscow: Nauka. (in Russian)
Belousov, Y. B., Moiseev, V. S., & Lepakhin, V. K. (1997). Klinicheskaya farmakologiya i farmakoterapiya. Moscow: Universum Pablishing. (in Russian)
Korzh, Y. A., Klimenko, N. A., Smolin, S. K., & Reshetnyak, L. R. (2016). Biosorbtsiya prokaina na biologicheski aktivnom ugle. Journal of Water Chemistry and Technology, 38(5), 519-530. (in Russian)
Voda v butylkakh opasnee vodoprovodnoy (n.d.). Retrived from https://www.epochtimes.ru/content/view/69576/7/ (in Russian)
Dolina, L. F. (2003). Novye metody i oborudovaniya dlya obezzarazhivaniya stochnykh i prirodnykh vod: monografiya. Dnepropetrovsk: Kontinent. (in Russian)
Dolina, L. F. (2001) Reaktory dlya ochistki stochnykh vod: uchebebnoe posobie. Dnepropetrovsk: Standart. (in Russian)
Korzh, Y. A., Smolin, S. K., & Klimenko, N. A. (2016). Kinetika adsorbtsii farmatsevticheskikh veshchestv iz vodnykh rastvorov na aktivnykh uglyakh. Journal of Water Chemistry and Technology, 38( 4), 342-353. (in Russian)
Kofman, V. Y. (2013). New advanced oxidation technologies of water and wastewater treatment (part 2) (foreign publications review). Water Supply and Sanitary Technique, 11, 70-77. (in Russian)
Lekarstva i lekarstvennaya bolezn (n.d.). Retrived from http://www.medn.ru/statyi/lechenie-solyu-skipidarom-kerosinom/lekarstva-i-lekarstvennaya-bolezn.html (in Russian)
Livshits, V. (n.d.). Lekarstva kak ekologicheskaya problema. Retrived from http://proza.ru/2013/02/27/1830 (in Russian)
Danilov-Danilyan, V. I., Poroykov, V. V., Chiganova, M. A., Kozlov, M. N., Filimonov, D. A., & Barenboym, G. M. (2013). Otsenka biologicheskoy opasnosti organicheskikh ksenobiotikov v istochnikakh vodosnabzheniya. Water Supply and Sanitary Technique, 10, 17-24. (in Russian)
Farmatsevticheskie sredstva v pitevoy vode. (n.d.). Retrived from http://www.who.int/water_sanitation_health/emerging/info_sheet_pharmaceuticals/ru/ (in Russian)
Shpakov, A. (1999). Antibiotiki i steroidy otravlyayut stochnye vody: Smert iz kanalizatsii. Komersant, 110. Retrived from https://www.kommersant.ru/doc/220792 (in Russian)
Al-Khazrajy, O. S. A., Bergström, E., & Boxall, A. B. A. (2017). Factors affecting the dissipation of pharmaceuticals in freshwater sediments. Environmental Toxicology and Chemistry, 37(3), 829-838. doi: 10.1002/etc.4015 (in English)
Boxall, A. B. A. (2004). The environmental side effects of medication. EMBO Reports, 5(12), 1110-1116. doi: 10.1038/sj.embor.7400307 (in English)
Domercq, P., Praetorius, A., & Boxall, A. B. A. (2018). Emission and fate modelling framework for engineered nanoparticles in urban aquatic systems at high spatial and temporal resolution. Environmental Science: Nano, 5(2), 533-543. doi: 10.1039/c7en00846e (in English)
Fent, K., Weston, A., & Caminada, D. (2005). Ecotoxicology of human pharmaceuticals. Aquatic Toxicology, 76(2), 122-159. doi: 10.1016/j.aquatox.2005.09.009 (in English)
Williams, R. (Ed.). (2005). Human Pharmaceuticals: Assessing the impacts on aquatic ecosystems. Pensacola: SETAC.
Desbiolles, F., Malleret, L., Tiliacos, C., Wong-Wah-Chung, P., & Laffont-Schwob, I. (2018). Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? Science of the Total Environment, 639, 1334-1348. doi: 10.1016/j.scitotenv.2018.04.351 (in English)
Probe: Pharmaceuticals In Drinking Water (n.d.). Retrived from https://www.cbsnews.com/news/probe-pharmaceuticals-in-drinking-water/ (in English)
Sumpter, J. P. (2010). Pharmaceuticals in the Environment: Moving from a Problem to a Solution. In Kummerer, K., & Hempel, M. (Eds.), Green and Sustainable Pharmac (pp.11-22). Berlin: Springer-Verlag. (in English)
Dolina, L. F., Mashykhina, P. B., Karpo, A. A., & Mishchenko, A. A. (2017). Waters reality in Ukraine worldwide. Science and Transport Progress, 5(71), 7-18. doi: 10.15802/stp2017/113695 (in English)
Downloads
Published
How to Cite
Issue
Section
License
Copyright and Licensing
This journal provides open access to all of its content.
As such, copyright for articles published in this journal is retained by the authors, under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0). The CC BY license permits commercial and non-commercial reuse. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project, the Directory of Open Access Journals, or the Budapest Open Access Initiative.
The CC BY 4.0 license allows users to copy, distribute and adapt the work in any way, provided that they properly point to the author. Therefore, the editorial board of the journal does not prevent from placing published materials in third-party repositories. In order to protect manuscripts from misappropriation by unscrupulous authors, reference should be made to the original version of the work.