SPECIAL LABORATORY TESTING METHOD FOR EVALUATION PARTICLE BREAKAGE OF RAILWAY BALLAST MATERIAL

Authors

DOI:

https://doi.org/10.15802/stp2018/130854

Keywords:

railway ballast, particle degradation, particle breakage, special laboratory test method, dynamic fatigue test

Abstract

Purpose. There are special, standardized laboratory test methods to evaluate railway ballast particle breakage; they are the Los Angeles and the Micro-Deval abrasion test. The authors opine that these methods aren’t the most adequate methods to assess the real ballast particle degradation because in reality never occurs these kinds of stresses and strains (i.e. particles in a rotating drum with or without steel balls and with or without water). A new laboratory test procedure is needed. The authors attempted to configure an adequate one in 2014, it is detailed in the paper, as well as the initial results and improvement possibility. This test method is related to dynamic pulsating test, the particle size distributions (PSD) had to be determined before and after fatigue. In 2017-2018 the research is supported by ÚNKP-17-4 program. Methodology. Multi-level steel box is utilized with a special layer structure, detailed in the paper. Five different types of railway ballast samples were tested. PSDs were defined, and regarding to the results relationship between ballast particle degradation values (according to Los Angeles and Micro-Deval abrasion tests, as well as this newly developed laboratory test method) was searched, as well as time interval between necessity railway ballast cleaning work was also calculated. Findings. The authors sentenced the results regarding to the self-developed laboratory test method that is able to assess the particle degradation and time interval between railway ballast cleaning work more precisely related to the real railway operation circumstances. Relationship was determined between particle breakage according to standardized and unique (non-standardized) laboratory test methods. Originality. The paper summarized the results a newly developed laboratory test method for evaluation of the degradation of railway ballast particles. Practical value. It sentenced the possibility to improve the measurements and assessments regarding to the research phase supported by the ÚNKP-17-4 project.

Author Biographies

S. Fischer, Széchenyi István University

Dep. «Transport Infastructure», Széchenyi István University, Egyetem tér 1., Győr, Hungary, 9026,
tel. + 36 (96) 613 544,
e‑mail fischersz@sze.hu

A. Németh, Széchenyi István University

Dep. «Transport Infastructure», Széchenyi István University, Egyetem tér 1., Győr, Hungary, 9026,
tel. + 36 (96) 613 544,
e‑mail nemeth.attila@sze.hu

References

Al-Saoudi, Namir K. S., & Hassan, Khawla H. (2013). Behaviour of Track Ballast Under Repeated Loading. Geotechnical and Geological Engineering, 32(1), 167-178. doi: 10.1007/s10706-013-9701-z. (in English)

Ambrus, K., & Pallós, І. (2012). Útépítési zúzottkövek és zúzottkavicsok aszfaltkeverékek gyártásához, felületi bevonatok készítéséhez. Retrieved from http://docplayer.hu/9502775-Utepitesi-zuzottkovek-es-zuzottkavicsok-aszfaltkeverekek-gyartasahoz-feluleti-bevonatok-keszitesehez.html (in Hungarian)

Anbazhagan, P., Bharatha, T. P., & Amarajeevi, G. (2012). Study of ballast fouling in railway track formations. Indian Geotechnical Journal, 42(2), 87-99. doi: 10.1007/s40098-012-0006-6 (in English)

Brancadoro, M. G., Bianchini Ciampoli, L., Ferrante, C., Benedetto, A., Tosti, F., & Alani, A. M. (2017). An Investigation into the railway ballast grading using GPR and image analysis. 9th International Workshop on Advanced Ground Penetrating Radar (IWAGPR): Conference Paper (Edinburgh, June 28-30). doi: 10.1109/IWAGPR.2017.7996043 (in English)

Arangie, P. B. D. (1997). The influence of ballast fouling on the resilient behaviour of the ballast pavement layer. Proc. of 6th Intern. Heavy Haul Railway Conference (Cape Town, April 6-10), 241-256. (in English)

Bajpai, P., & Das, A. (2017). Theoretical assessment of railway ballast degradation under cyclic loading. Bearing Capacity of Roads, Railways and Airfields: Proc. of the 10th Intern. Conference (June 28-30, Athens, Greece). doi: 10.1201/9781315100333-267 (in English)

Bearing Capacity of Roads, Railways and Airfields: Proc. of the 10th Intern. Conference (June 28-30, Athens, Greece). (2017). London. (in English)

Bian, X., D., Sun, D., & Li, W. (2017). Experimental study on cyclic deformation and particle breakage of railway ballast. Bearing Capacity of Roads, Railways and Airfields: Proc. of the 10th Intern. Conference (June 28-30, Athens, Greece), 1801-1809. (in English)

Claisse, P., & Calla, C. (2006). Rail ballast: conclusions from a historical perspective. Proceedings of the Institution of Civil Engineers-Transport, 159(2), 69-74. doi: 10.1680/tran.2006.159.2.69 (in English)

Christie, D., Nimbalkar, S., & Indraratna, B. (2009). The performance of rail track incorporating the effects of ballast breakage, confining pressure and geosynthetic reinforcement. Bearing Capacity of Roads, Railways and Airfields: Proc of the 8th Intern. Conference (June 29-July 2, Unversity of Illinois at Urbana, Champaign, Illinois, USA), 5-24. (in English)

Xiao, J., Zhang, D., Wang, Y., & Luo, Z. (2017). Cumulative deformation characteristic and shakedown limit of railway ballast under cyclic loading. Bearing Capacity of Roads, Railways and Airfields: Proc. of the 10th Intern. Conference (June 28-30, Athens, Greece), 1899-1904. (in English)

Indraratna, B., Sun, Q., Ngo, N. T., & Rujikiatkamjorn, C. (2017). Current research into ballasted rail tracks: model tests and their practical implications. Australian Journal of Structural Engineering, 18(3), 204-220. doi: 10.1080/13287982.2017.1359398 (in English)

D’Angelo, G., Presti, D. Lo, & Thom, N. (2017). Optimisation of bitumen emulsion properties for ballast stabilization. Materiales de Construcción, 67(327), 124. doi: 10.3989/mc.2017.04416 (in English)

TL DBS 918 061: Technische Lieferbedingungen Gleisschotter (2006). Berlin, 2006/08. (in German)

Hossain, Z., Indraratna, B., Darve, F., & Thakur, P. K. (2007). DEM analysis of angular ballast breakage under cyclic loading. Geomechanics and Geoengineering, 2(3), 175-181. doi: 10.1080/17486020701474962 (in English)

Diógenes, D. F., Maia, R., & Castelo, V. (2017). Evaluation of the ballast aggregates shape properties using digital image processing techniques. Bearing Capacity of Roads, Railways and Airfields: Proc. of the 10th Intern. Conference (June 28-30, Athens, Greece), 2003-2008. (in English)

Douglas, S. C. (2013). Ballast Quality and Breakdown during Transport. 2013 Joint Rail Conference: Conference Paper (Knoxville, Tennessee, USA, April 15-18). doi: 10.1115/JRC2013-2553 (in English)

Esmaeili, M., Aela, P., & Hosseini, A. (2017). Experimental assessment of cyclic behavior of sand-fouled ballast mixed with tire derived aggregates. Soil Dynamics and Earthquake Engineering, 98, 1-11. doi: 10.1016/j.soildyn.2017.03.033. (in English)

Fischer, S. (2012). A vasúti zúzottkő ágyazat alá beépített georácsok vágánygeometriát stabilizáló hatásának vizsgálata: PhD thesis. Győr. (in Hungarian)

Fischer, S. (2015). A vasúti zúzottkövek aprózódásvizsgálata egyedi laboratóriumi módszerrel. Sínek Világa, 57(3), 12-19. (in Hungarian)

Fischer, S. (2017). Breakage Test of Railway Ballast Materials with New Laboratory Method. Periodica Polytechnica Civil Engineering, 61(4), 794-802. doi: 10.3311/PPci.8549 (in English)

Gaitskell, P., & Shahin, M. A. (2013). Use of digital imaging for gradation and breakage of railway ballast. Australian Geomechanics, 48, 81-88. (in English)

Gálos, M., Kárpáti, L., & Szekeres, D. (2011). Ágyazati kőanyagok: A kutatás eredményei. 2 rész. Sínek Világa, 55(1), 6-13. (in Hungarian)

Guo, Y. L., & Jing, G. Q. (2017). Ballast degradation analysis by Los Angeles Abrasion test and image analysis method. Bearing Capacity of Roads, Railways and Airfields: Proceedings of the 10th International Conference (June 28–30, 2017, Athens, Greece), 1811-1815. (in English)

Indraratna, B., Salim, W., & Rujikiatkamjorn, C. (2011). Advanced rail geotechnology – Ballasted track. London: CRC Press. (in English)

Indraratna, B., Sun, Y., & Nimbalkar, S. (2016). Laboratory assessment of the role of particle size distribution on the deformation and degradation of ballast under cyclic loading. Journal of Geotechnical and Geoenvironmental Engineering, 142(7), 0401601601-0401601612. doi: 10.1061/(ASCE)GT.1943-5606.0001463 (in English)

Kausay, T. (2011). Adalékanyagok kőzetfizikai tulajdonságai. Út- és hídépítési műszaki előírások és alkalmazási tapasztalataik. Budapest. Retrived from http://www.betonopus.hu/szakmernoki/kozut-2-adalekanyag-kozetfizika.pdf. (in Hungarian)

Kausay, T. (2008). Zúzott betonadalékanyagok kőzetfizikai tulajdonságai a szabályozásban. Mérnökgeológia Kőzetmechanika, 259-270. (in Hungarian)

Kolos, A., Konon, A., & Chistyakov, P. (2017). Change of ballast strength properties during particle abrasive wear. Procedia Engineering, 189, 908-915. (in English)

Kondratov, V., Solovyova, V., & Stepanova, I. (2017). The development of a high performance material for a ballast layer of a railway track. Procedia Engineering, 189, 823-828. (in English)

Kurhan, M. B., & Kurhan, D. M. (2017). Railway track representation in mathematical model of vehicles movement. Science and Transport Progress, 6(72), 40-48. doi: 10.15802/stp2017/118380 (in English)

Lichtberger, B. (2005). Track compendium: Formation, Permanent Way, Maintenance, Economics. Hamburg: Eurailpress Tetzlaff-Hestra GmbH & Co. (in English)

McDowell, G., & Stickley, P. (2006). Performance of geogrid-reinforced ballast. Ground Engineering, January, 4-6. (in English)

Major, Z. (2013). Special problems of interaction between railway track and bridge. Pollack Periodica, 8(2), 97-106. doi: 10.1556/Pollack.8.2013.2.11 (in English)

A 102345/1995 PHMSZ előírás 3. számú módosítása (Modification3 inMÁV 102345/1995 PHMSZ. ’Railway substructure and ballast quality acceptance regulations instruction’), 5 MÁV (2008). (in Hungarian)

A 102345/1995 PHMSZ előírás 4. számú módosítása. (Modification4 inMÁV 102345/1995 PHMSZ. ’Railway substructure and ballast quality acceptance regulations instruction’), 14 MÁV (2010). (in Hungarian)

Guixian Liu, Guoqing Jing, Dong Ding, & Xiaoyi Shi. (2017). Micro-analysis of Ballast Angularity Breakage and Evolution by Monotonic Triaxial Tests. Environmental Vibrations and Transportation Geodyna-mics, 133-144. doi: 10.1007/978-981-10-4508-0_12 (in English)

Ghataora, G. S., Burrow, M. P. N., Kamalov, R. S., Wehbi, М., & Musgrave, Р. (2017). Migration of fine particles from subgrade soil to the overlying ballast. Railway Engineering – 2017: Conference Paper (Edinburgh, 2017, June 21–22). (in English)

Kőanyaghalmazok mechanikai és fizikai tulajdonságainak vizsgálata. 1. rész: A kopásállóság vizsgálata (mikro-Deval). (Tests for mechanical and physical properties of aggregates. Determination of the resistance to wear (micro-Deval), 35 MSZ EN 1097-1:2012 (2012). (in Hungarian)

Kőanyaghalmazok mechanikai és fizikai tulajdonságainak vizsgálata. 2. rész: Az aprózódással szembeni ellenállás meghatározása. (Tests for mechanical and physical properties of aggregates. Methods for the determination of resistance to fragmentation), 35 MSZ EN 1097-2:2010 (2010). (in Hungarian)

Kőanyaghalmazok geometriai tulajdonságainak vizsgálata. 3. rész: A szemalak meghatározása. Lemezességi szám. 12 MSZ EN 933-3 (2012). (in Hungarian)

Kőanyaghalmazok termikus tulajdonságainak és időjárás-állóságának vizsgálati módszerei. 2. rész: Magnézium-szulfátos eljárás.16 MSZ EN 1367-2 (2010). (in Hungarian)

Kőanyaghalmazok vasúti ágyazathoz. (Aggregates for railway ballast). 33 MSZ EN 13450:2003 (2003). (in Hungarian)

Nagy, R. (2017). Description of rail track geometry deterioration process in Hungarian rail lines No. 1 and No. 140. Pollack Periodica, 12(3), 141-156. doi: 10.1556/606.2017.12.3.13 (in English)

Nålsund, R. (2017). Prediction of railway ballast service life. Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece), 2055-2061. doi: 10.1201/9781315100333-291 (in English)

Nimbalkar, S., & Indraratna, B. (2016). Field assessment of ballasted railroads using geosynthetics and shock mats. Рrocedia Engineering, 143, 1485-1494. doi: 10.1016/j.proeng.2016.06.175. (in English)

Pavia, C. E. L., Pereira, M. L., & Pimentel, L. L. (2017). Study Of Railway Ballast Fouling By Abrasion-Originated Particles. Railway Engineering: Proc. of the 14th Intern. Conf. (Edinburgh, Scotland, UK, 21st–22nd June 2017). (in English)

Indraratna, B., Nimbalkar, S., Rujikiatkamjorn, C., Neville, T., & Christie, D. (2013). Performance Assessment of Synthetic Shock Mats and Grids in the Improvement of Ballasted Tracks. Proc. of the 18th Intern. Conf. on Soil Mechanics and Geotechnical Engineering, 1283-1286. (in English)

Fisher, S., Eller, B., Kada, Z., & Németh, A. (2015). Railway Construction. Győr: Universitas-Győr Nonprofit Kft. (in Hungarian)

Xiao, L. Fu, J., Zhou, S., Zhang, D., Wang, Y., Liu, W., & Jiang, L. (2017). Roadbed improvement of an existing railway line located in cold region by reusing crushed deteriorated ballast. Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece), 1845-1850. (in English)

Sadeghi, J. M., Zakeri, J. Ali, & Najar, M. E. M. (2016). Developing Track Ballast Characteristic Guideline In Order To Evaluate Its Performanc. International Journal of Railway, 9 (2), 27-35. doi: 10.7782/IJR.2016.9.2.027 (in English)

Selig, E. T., & Waters, J. M. (1994). Track Geotechnology and Substructure Management Ernest. London: Thomas Telford. (in English)

Junhua Xiao, De Zhang, Kai Wei, & Zhe Luo (2017). Shakedown behaviors of railway ballast under cyclic loading. Construction and Building Materials, 155, 1206-1214. doi: 10.1016/j.conbuildmat.2017.07.225 (in English)

Shi, X. (2009). Prediction of permanent Deformation in Railway Track (PhD thesis). University of No-ttingham, Nottingham. (in English)

Fortunato, E., Paixão, A., Fontul, S., Pires, J. (2017). Some results on the properties and behavior of railway ballast. Bearing Capacity of Roads, Railways and Airfields : Proc. of the 10th Intern. Conf. (June 28–30, 2017, Athens, Greece), 1877-1884. (in English)

Sun, Y., Chen, C., & Nimbalkar, S. (2017). Identification of ballast grading for rail track. Journal of Rock Mechanics and Geotechnical Engineering, 9(5), 945-954. doi: 10.1016/j.jrmge.2017.04.006 (in English)

Szalóki, F. (2017). Múlt, jelen, jövő az EU-s támogatások tükrében. XVIII Közlekedésfejlesztési és Beruházási Konferencia (Bükfürdő, 2017, April 26–28). Retrived from http://ktenet.hu/download.php?edid=1484. (in Hungarian)

Track ballast in Austria: Parts 1, 2, 3, 1-11. Retrived from https://www.plassertheurer.com/fileadmin/user_upload/Mediathek/Publikationen/ri_12888990.pdf (in English)

Weinreich, Z. (2011). Nagysebességű vasutak pályafenntartási kitűzése. Sínek Világa, 53(6), 27-31. (in Hungarian)

Wichtmann, T., & Triantafyllidis, T. (2013). Effect of uniformity coefficient on G/Gmax and damping ratio of uniform to well graded quartz sands. Journal of Geotechnical and Geoenvironmental Engineering, 139(1), 59-72. (in English)

Downloads

Published

2018-05-11

How to Cite

Fischer, S., & Németh, A. (2018). SPECIAL LABORATORY TESTING METHOD FOR EVALUATION PARTICLE BREAKAGE OF RAILWAY BALLAST MATERIAL. Science and Transport Progress, (2(74), 87–102. https://doi.org/10.15802/stp2018/130854

Issue

Section

RAILROAD AND ROADWAY NETWORK