MAGNETICALLY LEVITATED TRAIN'S SUSPENSION MODEL
DOI:
https://doi.org/10.15802/stp2017/115411Keywords:
magnetically levitated train, mathematical model of levitation, integrative paradigm of researchAbstract
Purpose. The implementation of the magnetically levitated train’s (MLT) levitation force (LF) occurs during the interaction between fields of superconducting train’s (STC) and short-circuited track’s contours (STC), which are included in to levitation module (LU). Based on this, the purpose of this study is to obtain a correct description of such interaction. Methodology. At the present stage, the main and most universal tool for the analysis and synthesis of processes and systems is their mathematical and, in particular, computer modeling. At the same time, the radical advantages of this tool make even more important the precision of choosing a specific methodology for research conducting. This is particularly relevant in relation to such large and complex systems as MLT. For this reason, the work pays special attention to the reasoned choice of the selective features of the research paradigm. Findings. The analysis results of existing versions of LF implementation’s models show that each of them, along with the advantages, also has significant drawbacks. In this regard, one of the main results of the study should be the construction of this force implementation’s mathematical model, which preserves the advantages of the mentioned versions, but free from their shortcomings. The rationality of application, for the train’s LF researching, of an integrative holistic paradigm, which assimilates the advantages of the electric circuit's and magnetic field's theory’s, is reasonably justified in work. Originality. The scientific novelty of the research – in priority of such a paradigm’s and the corresponding version’s of the LF’s implementation’s model’s creating. Practical value. The main manifestation of the practical significance of the work is the possibility, in the case of using its results, to significantly increase the effectiveness of dynamic MLT research while reducing their resource costing.
References
Armenskiy, Y. V., & Kuzina I. V. (1975). Yedinaya teoriya elektricheskikh mashin [Monograph]. Moscow: MIEM.
Bessonov, L. A. (1996). Teoreticheskiye osnovy elektrotekhniki: elektricheskiye tsepi [Monograph]. Moscow: Vysshaya shkola.
Biryukov, V. A., & Danilov, V. A. (1961). Magnitnoye pole pryamougolnoy katushki s tokom. Technical Physics, XXXI (4), 428-435.
Dzenzerskiy, V. A., Omelyanenko, V. I., Vasilev, S. V., Matin, V. I., & Sergeev, S. A. (2001). Vysokoskorostnoy magnitnyy transport s elektrodinamicheskoy levitatsiey [Monograph]. Kyiv: Naukova dumka.
Kopylov, I. P. (2001). Matematicheskoye modelirovaniye elektricheskikh mashin [Monograph]. Moscow: Vysshaya shkola.
Korn, G., & Korn, Y. (1973). Spravochnik po matematike dlya nauchnykh rabotnikov i inzhenerov. Moscow: Nauka.
Kron, G. (1955). Primeneniye tenzornogo analiza v elektrotekhnike [Monograph]. Moscow-Leningrad: Gostekhizdat.
Lvovich, A. Y. (1989). Elektromekhanicheskiye sistemy [tutorial]. Leningrad: St. Petersburg State University.
Panfilov, V. A. (2006). Elektricheskiye izmereniya [tutorial]. Moscow: Akademiya.
Rashevskiy, P. K. (1967). Rimanova geometriya i tenzornyy analiz. Moscow: Nauka.
Sipaylov, G. A., Kononenko, Y. V., & Khorkov, K. A. (1987). Elektricheskiye mashiny (spetsialnyy kurs) [tutorial]. Moscow: Vysshaya shkola.
Tandan, G. K., Sen, P. K., Sahu, G., Sharma, R., & Bohidar, S. (2015). A Review on Development and Analysis of Maglev Train. International Journal of Research in Advent Technology, 3 (12), 14-17.
Dumitrescu, M., Ştefan, V., Pleşcan, C., Bobe, C. I., Dragne, G. M., Badea, C. N., Dumitru, G. (2015). Magnetic suspension applications on the railway traction for high speed maglev trains. Proceeding of the International Scientific Conference «CIBV 2015», October, 30-31, 2015, Brasov, Romania. [Special Issue]. Bulletin of the Transylvania University of Braşov, 8 (57), 233-244.
Kelwadkar, A., Wairagade, R., Boke, M., Balapure, H., & Ganer, P. (2015). Magnetic Levitation Train. Journal for Research, 01 (08), 1-5.
Published
How to Cite
Issue
Section
License
Copyright and Licensing
This journal provides open access to all of its content.
As such, copyright for articles published in this journal is retained by the authors, under the terms of the Creative Commons Attribution 4.0 International License (CC BY 4.0). The CC BY license permits commercial and non-commercial reuse. Such access is associated with increased readership and increased citation of an author's work. For more information on this approach, see the Public Knowledge Project, the Directory of Open Access Journals, or the Budapest Open Access Initiative.
The CC BY 4.0 license allows users to copy, distribute and adapt the work in any way, provided that they properly point to the author. Therefore, the editorial board of the journal does not prevent from placing published materials in third-party repositories. In order to protect manuscripts from misappropriation by unscrupulous authors, reference should be made to the original version of the work.