DETERMINATION AND RANGING OF ORGANIZATIONAL AND TECHNOLOGICAL FACTORS THAT DEFINE THE RATIONAL DECISIONS OF RE-BARS CONNECTION

Authors

DOI:

https://doi.org/10.15802/stp2017/104543

Keywords:

re-bars, connection, expert evaluation, rank, factor, ranking, concordance coefficient

Abstract

Purpose. The paper proposes: 1) determination and formulation of factors that influence the choice of rational method for joining re-bars of vertical support members of reinforced concrete frame; 2) determination of factor parameters; 3) ranging of factors by the expert evaluation (Delphi) method. Methodology. In order to achieve research objectives, it is necessary to carry out analysis of existent rebar connection methods, determination of factors and parameter variation limits for each of the methods. Performing factor ranking by the expert evaluation method. Findings. The results of the questioning materials of 14 experts in the area of monolithic construction allowed setting the following: when choosing the rational re-bars connections, the most significant values are the factors that define the time parameters: possibility of carcassing, time of joining the re-bars, length of rebar cage, prior operation run time, operation time of main lifting equipment. Herewith the factors that define the rebar cage parameters have a direct relation to the work performance time, as they determine the amount of bar connections in the course of building erection over wide range. Economic factors – rebar connection cost and quality control cost – have the less value. It is obvious that in the conditions of considerable construction expenses it is advantageous for an investor to increase the rebar joining cost for the work growth rate. Structural and technological factors have the least value: origin of eccentric load transmission between re-bars, possibility of use of the thermally work-hardened re-bars of А500 and higher grades, work category for implementation of works, necessity to use the scaffold and appurtenances for re-enforcement of constructions. The reason is analogical: a contractor is ready to go to complication of technology with the purpose of reduction of the facility erection terms. As the calculated Pearson’s matching criterion χ2 = 47.24 is higher than the tabular one (22.36203), then the obtained concordance coefficient W=0.26 is not casual value, and that is why the obtained results make sense and can be used in further researches. Originality. The author obtained factors that influence the choice of the rational method for re-bars connection the most. Practical value. Ranging of factors will allow objective approaching to the problem of choice of re-bars connection method, optimizing the labour and material costs, and also reducing the construction time.

Author Biographies

A. V. Radkevych, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Dep. «Build Production and Geodesy»,
Lazaryan St., 2, Dnipro, Ukraine, 49010

A. M. Netesa, Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan

Dep. «Build Production and Geodesy», 
Lazaryan St., 2, Dnipro, Ukraine, 49010

References

Vyskrebentsev, V. G., & Soldatov, K. I. (2014). Research of efficiency of using carbon fiber in armored concrete spans of railway bridges. Bridges and Tunnels: Theory, Research, Practice, 5, 16-21.

Konstruktsii budynkiv i sporud. Betonni ta zalizobetonni konstruktsii. Osnovni polozhennia, DBN V.2.6-98:2009 (2011).

Armaturni ta zakladni vyroby zvarni, ziednannia zvarni armatury i zakladnykh vyrobiv zalizobetonnykh konstruktsii. Zahalni tekhnichni umovy, DSTU B V.2.6-168:2011 (2012).

Ziednannia zvarni armatury ta zakladnykh vyrobiv zalizobetonnykh konstruktsii. Typy, konstruktsii ta rozmiry, DSTU B V.2.6-169:2011 (2012).

Ziednannia zvarni stykovi i tavrovi armatury zalizobetonnykh konstruktsii. Ultrazvukovi metody kontroliu yakosti. Pravyla pryimannia, DSTU B V.2.6-182:2011 (2012).

Konstruktsii budynkiv i sporud. Betonni ta zalizobetonni konstruktsii z vazhkoho trokhkomponentnoho betonu. Pravyla proektuvannia, DSTU B V.2.6-156:2010 (2011).

Netesa, A. N. (2015). Comparative of analysis of labour intensiveness and cost of control of quality of basic methods of connection of armature. Bridges and Tunnels: Theory, Research, Practice, 8, 57-64

Radkevych, A. V., & Netesa, A. N. (2015). Introduction of innovative technology of connection of armature muffs with a cylindrical screw-thread. Proceedings of the Conference on Effective technological decisions in building with the use of concretes of new generation, October 28-29, 2015, Kharkov. 125-130.

Radkevych, A. V., Netesa, A. N., & Gayada, A. (2016). Technological regulation of device of armature frameworks of columns and pylons with the threaded connection of armature by muffs with a cylindrical screw-thread. Proceedings of the I International Conference on Effective Technologies in Construction, April 7-8, 2016, Kyiv. 61-62.

Savytskyi, M. V., Zinkevych, O. H., & Zinkevych, A. M. (2012). Eccentricity Influence on Work of the Lightweight Steel Framing Buildings’ Compressed Elements. Bridges and Tunnels: Theory, Research, Practice, 2, 76-79.

Gergess, A. N., & Sen R. (2013). Design implications of increased live loads on continuous precast, prestressed concrete girder bridges. PCI Journal, 58(2), 64-79. doi: 10.15554/pcij.03012013.64.79

Rodríguez, M. E., & Torres-Matos, M. (2013). Seismic behavior of a type of welded precast concrete beam-column connection. PCI Journal, 58(3), 81-94. doi: 10.15554/pcij.06012013.81.94

Takeda, K., Tanaka, K., Someya, T., Sakuda, A., & Ohno, Y. (2013). Seismic retrofit of reinforced concrete buildings in Japanusing external precast, prestressed concrete frames. PCI Journal, 58 (3), 41-61. doi: 10.15554/pcij.06012013.41.61

Published

2017-06-19

How to Cite

Radkevych, A. V., & Netesa, A. M. (2017). DETERMINATION AND RANGING OF ORGANIZATIONAL AND TECHNOLOGICAL FACTORS THAT DEFINE THE RATIONAL DECISIONS OF RE-BARS CONNECTION. Science and Transport Progress, (3(69), 171–181. https://doi.org/10.15802/stp2017/104543

Issue

Section

TRANSPORT CONSTRUCTION