ISSN 2307–3489 (Print), ІSSN 2307–6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського
національного університету залізничного транспорту, 201
6, 6 (66)



нетрадиційні види транспорту. машини та механізми

UDC 621.867.3

V. M. BOHOMAZ1*, M. V. BORENKO2*, S. V. PAtsanovskyI3*, O. O. TKachov4*

1*Dep. «Military training of specialists of the State special service of transport», Dnipropetrovsk National University
of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010,
tel. +38 (056) 373 19 09, e-mail wbogomas@i.ua, ORCID 0000-0001-5913-2671
2*Dep. «Military training of specialists of the State special service of transport», Dnipropetrovsk National University
of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010,
tel. +38 (056) 373 19 09, e-mail bmw1961@ukr.net, ORCID 0000-0001-9578-3906
3*Dep. «Military training of specialists of the State special service of transport», Dnipropetrovsk National University
of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010,
tel. +38 (056) 373 19 09, e-mail psven68@i.ua, ORCID 0000-0002-1628-3733
4*Dep. «Military training of specialists of the State special service of transport», Dnipropetrovsk National University
of Railway Transport named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010,
tel. +38 (056) 373 19 09, e-mail otkachov@i.ua, ORCID 0000-0002-1857-7567

ANALYSIS OF INFLUENCe

OF design characteristics


OF INCLINED bucket elevator

on the POWER of ITS DRIVE

Purpose. One of the main elements of the inclined belt bucket elevators is their drive. To determine the drive power, it is necessary to carry out calculations according to standard methods, which are described in the modern literature. The basic design parameters are the productivity, lifting height, type and properties of the transported material, the angle of inclination. It is necessary to build a parametric dependence of the driving power of the elevator on its design parameters, which takes into account the standard sizes and types of buckets and belts. Methodology. Using the methodology of traction calculation of inclined belt bucket elevator there were built parametric dependences of efforts in specific points of the route of the elevator, as well as the parametric dependences of the drive power of high-speed elevators with deep and shallow buckets on their design parameters and characteristics. Findings. On the basis of constructed parametric dependencies, it was found that the function of changing the value of the elevator’s power from design capacity (at fixed lifting height, type of cargo, belt speed) is piecewise constant and monotonically increasing. It was built a graphical representation of elevator drive power on the angle of its inclination within acceptable limits of change. The resulting relationship is non-linear and monotonically decreasing. In general terms the intervals of project performance values, which provide a constant value of drive power of inclined elevator were defined. As an example of the obtained results it was observed the process of dependence construction of the drive power on design capacity and inclination angle of the elevator for transporting the fine coal. Originality. For the first time there were constructed the parametric dependences of drive power of inclined bucket elevator on its design parameters that take into account the standard sizes and types of buckets and belts. Practical value. Using the constructed dependencies enables relatively quick determination of the approximate value of the drive power of high-speed inclined elevators with deep and shallow buckets at the design stage and high-quality selection of its basic elements in the design of specific characteristics: type of cargo, productivity, lifting height, angle of inclination.

Keywords: inclined elevator; bucket; drive; power; productivity; cargo; angle of inclination

Introdiction

Increasing the pace of economic development is impossible without technical re-equipment of production. The successful solution of this problem is largely determined by implementation of new technologies with the use of stream-flow transportation machines. They have great performance and length of transportation and can replace batch machines in traditional application fields, such as hauling, handling and warehousing operations. These machines have become very popular in mass and high-volume production with wide use of automatic lines. A special type of stream-flow transportation machines is inclined belt bucket elevators. Generally, elevators are the lifts that are used for vertical and steeply inclined (at an angle 60–82о) displacement of bulk and piece cargo without intermediate loading and unloading. Their use when transporting materials increase the efficiency of the production process in many industries: chemical, metallurgical, engineering, etc.


The main publications describing the structure, design features, performance and design parameters of elevators, including the inclined ones are the following works [5-9, 11-15]. To determine the drive power of inclined elevator it is necessary to conduct a detailed calculation of its elements and perform a selection of basic elements of the drive. The order of these calculations is described in detail in the works [8, 9]. It should be noted that the use of traditional calculation methodology of the elevator’s drive requires a lot of time. To improve the design process of the inclined elevator’s drive it is necessary to define a scheme that makes it possible to determine the required drive power value depending on the specific design parameters: the type of load, lifting height, track inclination angle and performance using simpler calculations. The works [2-4] of one of the authors include similar scheme for vertical elevators and conveyor belts. The natural generalization and continuation of these works will be the construction of schemes for inclined elevators. This is because the inclined elevators as opposed to the vertical ones include the component of tension force related to the force of belt friction on the support elements.

Purpose

The article is aimed to construct and analyze the parametric dependence of inclined elevator’s drive power on its design parameters (type of load, lifting height, angle of inclination, performance) taking into account the standard sizes and parameters of buckets and belts.

Methodology

In general, for design of stream-flow transportation machines one should have the following basic data:

diagram of machine track with indicated places of loading and unloading;

appointment, conditions and operation mode of machine and the place of its installation;

the required performance;

characteristics of transported cargoes.

Thus, the initial data for design calculation of the elevator are such values as the transported material (its density and physical and mechanical properties) lift height of cargo, inclination angle of elevator to the horizon, required performance.

To construct general dependence of drive power on the performance there will be used the required coefficients at the values that make it possible to calculate the corresponding values of the required drive power for specific types of cargoes.

By analogy with [3] let us consider the value that takes into account the properties of transported cargo for further studies:

. (1)

Linear content of the elevator’s bucket:

, (2)

where – is a value that takes into account characteristics of the cargo and is calculated using dependence (1), t m/l h; – is a coefficient of bucket fill (according to the physical and mechanical properties of cargo); – is a spacing of the buckets, m; – is a cargo density, t/m3; – is a speed of the belt movement, m/s.

According to the value of linear content of elevator’s bucket calculated from the formula (2) the type and spacing of buckets in accordance with the table 1 recommended by the wok [9] are selected. Selection of buckets type depends on the properties of the material, which is being transported. Deep buckets are used for free-flowing, dusty and small pieced cargoes; the shallow ones – for non-free-flowing cargoes.

To take account physical and mechanical properties of the cargo, which is being transported in further calculations let us construct the correspondence tables of elevator parameters specified in the Table 1 to the performance value expressed by the formula (2) in the parts of coefficient . The obtained data will be tabulated in the Tables 2, 3 for elevators with deep and shallow buckets respectively.

Based on the design value of elevator productivity and the type of material, which is being transported according to the Tables 2 and 3, the bucket parameters, their spacing on the belt and the required width of the belt are selected. Characteristics of deep and shallow buckets are shown in the Tab. 4.



Table 1

Value of linear content of buckets

Bucket width , mm


Belt width , mm

Spacing of the buckets , mm

Bucket


deep

shallow


, l

, l/m

, l

, l/m

1

2

3

4

5

6

7

100

125

200

0.2

1

0.1

0.5

125

150

320

0.4

1.3

0.2

0.66

160

200

320

0.6

2

0.35

1.17

200

250

400

1.3

3.24

0.75

1.87

250

300

400

2.0

5

1.4

3.5

320

400

500

4.0

8

2.7

5.4

400

500

500

6.3

12.6

4.2

8.4

500

650

630

12

19

-

-

650

800

630

18

28.6

-

-

800

1000

800

32

40

-

-

1000

1200

800

45

56.25

-

-



Table 2

Dependence of parameters of deep buckets on the elevator’s productivity

Bucket width , mm


Belt width , mm

Spacing of the buckets , mm

Bucket capacity

, l

Elevator productivity, t/h

100

125

160

200

250

320

400

500

650

800

1000

125

150

200

250

300

400

500

650

800

1000

1200

200

320

320

400

400

500

500

630

630

800

800

0.2

0.4

0.6

1.3

2.0

4.0

6.3

12

18

32

45

α

1.3α

3.24α

12.6α

19α

28.6α

40α

56.25α









Table 3

Dependence of parameters of shallow buckets on the elevator’s productivity

Bucket width, mm


Belt width , mm

Spacing of the buckets , mm

Bucket capacity

, l

Elevator productivity, t/h

100

125

160

200

250

320

400

125

150

200

250

300

400

500

200

320

320

400

400

500

500

0.1

0.2

0.35

0.75

1.4

2.7

4.2

0.5α

0.66α

1.17α

1.87α

3.5α

5.4α

8.4α

Table 4

Description of elevator buckets

Bucket type

Internal size of bucket, mm

Bucket capacity,

width


outreach


height

Rounded deep one D

100

100

125

160

200

250

320

400

500

650

800

1000

50

75

90

105

125

140

175

195

235

250

285

310

65

80

95

110

135

150

190

210

255

275

325

355

25

25

30

35

40

45

55

60

75

80

85

95

0.1

0.2

0.4

0.6

1.3

2.0

4.0

6.3

12

18

32

45

Bucket type

Internal size of bucket, mm

Bucket capacity,

width


outreach


height

Rounded shallow one S

125

160

200

250

320

400

65

75

95

120

145

170

85

100

130

160

190

220

30

35

40

55

70

85

0.2

0.35

0.75

1.4

2.7

4.2


For clearness of further research let us take the conveyor belt according to State Standard 20-85 of the type BKNL-150 as traction body of elevator. The actual number of spacer plates of the belt can be 3-6.

The belt thickness is determined by the formula

, (3)

where mm, mmis the thickness of rubber coatings from the working and non-working sides of the belt; mmis the thickness of fabric insert ply, is the number of fabric insert plies.

The weight of one running meter of belt is determined by the formula

, (4)

where kg/m3belt density.

Involving the formulas (3)-(4) in the calculation let us present the table of correspondence of width and linear weight of the belt with a different number of insert plies to design values of elevator productivity for deep and shallow buckets.

Table 5

Linear weight of belts for deep buckets

Bucket width, mm

Linear weight of the belt at , N/m

Linear weight of the belt at , N/m

Linear weight of the belt at , N/m

Linear weight of the belt at , N/m

Elevator productivity, t/h

125

150

200

250

300

400

500

650

800

1000

1200

12.5

15.0

20.1

25.1

30.1

40.1

50.1

65.2

80.2

100.3

120.3

14.7

17.6

23.5

29.4

35.3

47.0

58.8

76.4

94.0

117.5

141.0

16.8

20.2

27.0

33.7

40.4

53.9

67.4

87.6

107.8

134.8

161.7

19.0

22.8

30.4

38.0

45.6

60.8

76.0

98.8

121.6

152.0

182.4

α

1.3α

3.24α

12.6α

19α

28.6α

40α

56.25α

Table 6

Linear weight of belts for shallow buckets

Bucket width , mm

Linear weight of the belt at , N/m

Linear weight of the belt at , N/m

Linear weight of the belt at , N/m

Linear weight of the belt at , N/m

Elevator productivity, t/h

125

150

200

250

300

400

500

12.5

15.0

20.1

25.1

30.1

40.1

50.1

14.7

17.6

23.5

29.4

35.3

47.0

58.8

16.8

20.2

27.0

33.7

40.4

53.9

67.4

19.0

22.8

30.4

38.0

45.6

60.8

76.0

0.5α

0.66α

1.17α

1.87α

3.5α

5.4α

8.4α


Distributed weight of cargo per 1 m of belt is determined by the formula:

, (5)


where coefficient depending on the belt speed, N·s/kg·m.

The dependence of value of distributed weight of cargo on the design productivity calculated by the formula (5) is given in the Table 7.

Table 7

Distributed weight of cargo

Bucket width , mm


Distributed cargo weight during operation of elevator with shallow buckets N/m

Elevator productivity with shallow buckets, N/m

Distributed cargo weight during operation of elevator with deep buckets N/m

Elevator productivity with deep buckets, N/m

100

125

160

200

250

320

400

500

650

800

1000

0.5αλ

0.66αλ

1.17αλ

1.87αλ

3.5αλ

5.4αλ

8.4αλ

-

-

-

-

0.5α

0.66α

1.17α

1.87α

3.5α

5.4α

8.4α

-

-

-

-

αλ

1.3αλ

2αλ

3.24αλ

5αλ

8αλ

12.6αλ

19αλ

28.6αλ

40αλ

56.25αλ

α

1.3α

3.24α

12.6α

19α

28.6α

40α

56.25α

Linear weight of the belt with buckets is determined by the formula:

, (6)

where bucket weight, kg (Tab. 8).

Linear burden on the loaded strand is determined using the formula:

. (7)

The estimated weight of deep and shallow buckets is given in the Table 8 [9].

Involving the formulas (6)-(7) in the calculation and taking into account data from the Table 8 let us determine the dependency of linear load on the loaded strand of elevator on the productivity values for deep and shallow buckets. The obtained results of calculations for belts with different number of insert plies is presented in the Tables 9, 10.

Table 8

Estimated mass of elevator’s buckets

Bucket width, mm

Wall thickness, mm

Weight of one bucket, kg

,

Deep

Shallow

100

2

0.5

0.4

125

2

0.7

0.6

160

2

0.9

0.7

200

3

2

1.5

250

3

3

2

320

3

5

5

400

4

11

10

500

5

18

-

650

5

23

-

800

6

28

-

1000

6

33

-





Table 9

The linear load on the loaded strand for deep buckets

Bucket width , mm


Distributed weight of cargo , N/m


Linear load on loaded strand at the belt with

, N/m


Linear load on loaded strand at the belt with , N/m


Linear load on loaded strand at the belt with , N/m


Linear load on loaded strand at the belt with , N/m


Elevator productivity, t/h

100

125

160

200

250

320

400

500

650

800

1000

αλ

1.3αλ

2αλ

3.24αλ

5αλ

8αλ

12.6αλ

19αλ

28.6αλ

40αλ

56.25αλ

37+αλ

36.4+1.3αλ

47.7+2αλ

74.1+3.24αλ

103.6+5αλ

138.1+8αλ

265.7+12.6αλ

345.2+19αλ

438+28.6αλ

443.3+40αλ

524.6+56.3αλ

39.2+αλ

39+1.3αλ

51.1+2αλ

78.4+3.24αλ

108.8+5αλ

145+8αλ

274.4+12.6αλ

356.4+19αλ

451.8+28.6αλ

460.5+40αλ

545.3+56.3αλ

41.3+αλ

41.6+1.3αλ

54.6+2αλ

82.7+3.24αλ

113.9+5αλ

151.1+8αλ

283+12.6αλ

367.6+19αλ

465.6+28.6αλ

477.8+40αλ

566+56.3αλ

43.5+αλ

44.2+1.3αλ

58+2αλ

87+3.24αλ

119.1+5αλ

158+8αλ

291.6+12.6αλ

378.8+19αλ

479.4+28.6αλ

495+40αλ

586.7+56.3αλ

α

1.3α

3.24α

12.6α

19α

28.6α

40α

56.25α

Table 10

The linear load on the loaded strand for shallow buckets

Bucket width , mm


Distributed weight of cargo , N/m


Linear load on loaded strand at the belt with , N/m


Linear load on loaded strand at the belt with , N/m


Linear load on loaded strand at the belt with , N/m


Linear load on loaded strand at the belt with , N/m


Elevator productivity, t/h

1

2

3

4

5

6

7

100

0.5αλ

32.1+0.5αλ

34.3+0.5αλ

36.4+0.5αλ

38.6+0.5αλ

0.5α

1

2

3

4

5

6

7

125

160

200

250

320

400

0.66αλ

1.17αλ

1.87αλ

3.5αλ

5.4αλ

8.4αλ

33.4+0.66αλ

41.5+1.17αλ

61.9+1.87αλ

79.1+3.5αλ

138.1+5.4αλ

246.1+8.4αλ

36+0.66αλ

44.9+1.17αλ

66.2+1.87αλ

84.3+3.5αλ

145+5.4αλ

254.8+8.4αλ

37.8+0.66αλ

48.4+1.17αλ

70.5+1.87αλ

89.4+3.5αλ

151.1+5.4αλ

263.4+8.4αλ

40.4+0.66αλ

51.8+1.17αλ

74.8+1.87αλ

94.6+3.5αλ

158+5.4αλ

272+8.4αλ

0.66α

1.17α

1.87α

3.5α

5.4α

8.4α

Traction calculation of inclined bucket elevator is performed by the method of encirclement, the basic principle of which is to identify specific points of the track where the belt tension is changed. At this tension in the next () point is equal to the sum of belt tension in this () point and the belt movement resistance in the area between these points:

. (8)

In case of drive drum rotation (Fig. 1) in clockwise order the minimum tension will be at the point 2 . This tension in the belt during normal scooping satisfies the following condition:

. (9)

The belt tension force at the point 3 consists of tension force, drum resistance and resistance to scooping of cargo:

, (10)

where coefficient of tension increase in the belt with buckets when bending around the drum.

Fig. 1. Scheme of inclined bucket elevator

Resistance to material scooping is determined using the formula:

, (11)

where is a coefficient of scooping (Nm/kg), which is determined by specific work expended for scooping of 1 kg of material. At the speed of buckets m/s Nm/kg for powdered and small pieced materials, and Nm/kg for medium pieced material.

Thus, substituting formulas (8) and (11) to (10), we have:

. (12)

Choosing the value N m/kg (which meets all cargoes) we have:

. (13)

We assume that the belt with buckets at the track sections 3-4 and 1-2 (Fig. 1) is supported by direct roller supports.

The specific weight of moving parts of roller supports for loaded (section 3-4) and unloaded (section 1-2) strands is determined by the formulas:

. (14)

. (15)

where weight of rotating parts of the upper and lower rolers.

For further calculations the tables of estimated values of the distances between rollers of loaded strand (Tab. 11) and the characteristics and sizes of roller supports shown in the Table 12 will be used.

Ordinary roller supports of the strand 1-2 are set with the spacing, twice as high as . The dependence of the weight of ordinary roller supports on the belt width is presented in the Table 12.

To facilitate further studies, it is assumed that the cargo has a density in the range of 1 … 2 t/m3. Using the formulas (14)-(15) let us present the values of specific weight of moving parts of roller supports for loaded and unloaded strands depending on the belt width and width of the bucket. Calculated values of the specific weight will be presented in the Table 13.

Table 11

The estimated value of distances between supports of loaded strand

Material density , t/m3

Distances between supports of loaded strand at the belt width, mm

400

500

650

800

1000

1200

1400…1600

1800…2000

1

1500

1500

1400

1400

1300

1300

1200

1100

1…2

1400

1400

1300

1300

1200

1200

1100

1100

more than 2

1300

1300

1200

1200

1100

1100

1100

900


Table 12

Weight of ordinary direct roller supports

Belt width B, mm

Weight, kg

400

6.0

500

7.5

650

10.5

800

18.5

1 000

22.0

1 200

25.0

Table 13

The estimated values of the specific weight of moving parts of roller supports
for loaded and unloaded strands

Specific weight of moving parts

Bucket width , mm

320

400

500

650

800

1000

loaded strand , N/m


40

50

75

132

169

192

uloaded strand , N/m


20

25

37.5

66

84.5

96


For clearness of further calculations at the buckets with width less than 320 mm, let us take the value of specific weight of moving parts of roller supports for loaded and unloaded strands branches N/m, N/m, respectively. We also accept that working conditions of the elevator will be difficult; therefore, the resistance coefficient of the belt movement along the rollers in future will be equal to 0.03.

Traction forces at the points 1 and 4 are determined using the formulas:

, (16)

, (17)

where – lift height of cargo, m; inclination angle of elevator, degree; resistance coefficient of the belt movement along the rollers.

The dependence of traction forces values at the point 4 calculated by the formula (16) on the value of design productivity, bucket type and amount of insert plies are summarized in the Tables 14-15.

The dependence of the values of tension force at the point 1 calculated by the formula (17) on the value of design productivity, bucket type and amount of insert plies of the belt are summarized in the Tables 16-17.

Tractive effort accounting rotational resistance of the drive drum is determined using the formula:

, (18)

where is a resistance coefficient of drive drum rotation.

After algebraic transformations in the formula (18) we have:

. (19)

The values of tractive effort taking into account the drum rotation resistance depending on the values of design performance, bucket type (deep and shallow) and the number of insert plies of the belt are summarized in the Tables 18-19.


Table 14

Traction force at the point 4 at deep buckets

Bucket width , mm

Traction force at the belt with , N

Traction force at the belt with , N

Traction force at the belt with , N

Traction force at the belt with , N

Elevator productivity, t/h

100

37H+αλ (7.95+H)+

+(77+αλ) cHctgβ

39.2H+αλ (7.95+H)+

+(79.2+αλ) cHctgβ

41.3H+αλ(7.95+H)+

+(81.3+αλ) cHctgβ

43.5H+αλ (7.95+H)+

+(83.5+αλ) cHctgβ

α

125

36.4H+1.3αλ(7.95+H)+

+(76.4+1.3αλ)cHctgβ

39H+1.3αλ (7.95+H)+

+(79+1.3αλ)cHctgβ

41.6H+1.3αλ(7.95+H)

+(81.6+1.3αλ) cHctgβ

44.2H+1.3αλ (7.95+H)

+(84.2+1.3αλ) cHctgβ

1.3α

160

47.7H+2αλ (7.95+H)+

+(87.7+2αλ) cHctgβ

51.1H+2αλ (7.95+H)+

+(91.1+2αλ) cHctgβ

54.6H+2αλ(7.95+H)+

+(94.6+2αλ) cHctgβ

58H+2αλ (7.95+H)+

+(98+2αλ) cHctgβ

200

74.1H+3.24αλ(7.95+H)

+(114.1+3.24αλ)cHctgβ

78.4H+3.24αλ(7.95+H)+

+(118.4+3.24αλ) cHctgβ

82.7H+3.24αλ(7.95+H)

+(122.7+3.24αλ)cHctgβ

87H+3.24αλ (7.95+H)+

+(127+3.24αλ) cHctgβ

3.24α

250

103.6H+5αλ (7.95+H)+

+(143.6+5αλ) cHctgβ

108.8H+5αλ (7.95+H)+

+(148.8+5αλ) cHctgβ

113.9H+5αλ(7.95+H)+

+(153.9+5αλ) cHctgβ

119.1H+5αλ (7.95+H)

+(159.1+5αλ) cHctgβ

320

138.1H+8αλ (7.95+H)+

+(178.1+8αλ) cHctgβ

145H+8αλ (7.95+H)+

+(185+8αλ) cHctgβ

151.1H+8αλ(7.95+H)+

+(191.1+8αλ) cHctgβ

158H+8αλ(7.95+H)+

+(198+8αλ) cHctgβ

400

265H+12.6αλ(7.95+H) +(315.7+12.6αλ)cHctgβ

274.4H+12.6αλ(7.95+H)

+(324.4+12.6αλ) cHctgβ

283H+12.6αλ(7.95+H)

+(333+12.6αλ) cHctgβ

291.6H+12.6αλ(7.95+H)

+(341.6+12.6αλ) cHctgβ

12.6α

500

345.2H+19αλ (7.95+H)

+(420.2+19αλ) cHctgβ

356.4H+19αλ(7.95+H)

+(431.4+19αλ) cHctgβ

367.6H+19αλ(7.95+H)

+(442.6+19αλ) cHctgβ

378.8H+19αλ(7.95+H)

+(453.8+19αλ) cHctgβ

19α

650

438H+28.6αλ (7.95+H)

+(570+28.6αλ) cHctgβ

451.8H+28.6αλ(7.95+H)

+(583.8+28.6αλ) cHctgβ

465H+28.6αλ(7.95+H)

+(597.6+28.6αλ)cHctgβ

479.4H+28.6αλ(7.95+H)

+(611.4+28.6αλ) cHctgβ

28.6α

800

443.3H+40αλ (7.95+H)

+(612.3+40αλ) cHctgβ

460.5H+40αλ(7.95+H)

+(629.5+40αλ) cHctgβ

477.8H+40αλ(7.95+H)

+(646.8+40αλ) cHctgβ

495H+40αλ(7.95+H)+

+(664+40αλ) cHctgβ

40α

1000

524H+56.3αλ(7.95+H)

+(716.6+56.3αλ)cHctgβ

545.3H+56.3αλ(7.95+H)

+(737.3+56.3αλ) cHctgβ

566H+56.3αλ(7.95+H)+

+(758+56.3αλ) cHctgβ

586.7H+56.3αλ(7.95+H)

+(778.7+56.3αλ) cHctgβ

56.25α



Table 15

Traction force at the point 4 at shallow buckets

Bucket width , mm

Traction force at the belt with , N

Traction force at the belt with , N

Traction force at the belt with , N

Traction force at the belt with , N

Elevator productivity, t/h

100

32.1H+0.5αλ(7.95+H)

+(72.1+0.5αλ) cHctgβ

34.3H+0.5αλ(7.95+H) +(74.3+0.5αλ) cHctgβ

36.4H+0.5αλ(7.95+H) +(76.4+0.5αλ) cHctgβ

38.6H+0.5αλ(7.95+H) +(78.6+0.5αλ) cHctgβ

0.5α

125

33.4H+0.66αλ(7.95+H)+(73.4+0.66αλ) cHctgβ

36H+0.66αλ (7.95+H) +(76+0.66αλ) cHctgβ

37.8H+0.66αλ(7.95+H) +(77.8+0.66αλ) cHctgβ

40.4H+0.66αλ(7.95+H) +(80.4+0.66αλ) cHctgβ

0.66α

160

41.5H+1.17αλ(7.95+H) +(81.5+1.17αλ) cHctgβ

44.9H+1.17αλ(7.95+H) +(84.9+1.17αλ) cHctgβ

48.4H+1.17αλ(7.95+H) +(88.4+1.17αλ) cHctgβ

51.8H+1.17αλ(7.95+H) +(91.8+1.17αλ) cHctgβ

1.17α

200

61.9H+1.87αλ(7.95+H) +(101.9+1.87αλ)cHctgβ

66.2H+1.87αλ(7.95+H) +(106.2+1.87αλ)cHctgβ

70.5H+1.87αλ(7.95+H) +(110.5+1.87αλ)cHctgβ

74.8H+1.87αλ(7.95+H) +(114.8+1.87αλ)cHctgβ

1.87α

250

79.1H+3.5αλ(7.95+H)+

+(119.1+3.5αλ)cHctgβ

84.3H+3.5αλ(7.95+H)+

+(124.3+3.5αλ)cHctgβ

89.4H+3.5αλ(7.95+H)+

+(139.4+3.5αλ)cHctgβ

94.6H+3.5αλ (7.95+H)

+(134.6+3.5αλ)cHctgβ

3.5α

320

138.1H+5.4αλ(7.95+H)

+(178.1+5.4αλ)cHctgβ

145H+5.4αλ (7.95+H)

+(185+5.4αλ)cHctgβ

151.1H+5.4αλ(7.95+H)

+(191.1+5.4αλ)cHctgβ

158H+5.4αλ (7.95+H)+

+(198+5.4αλ)cHctgβ

5.4α

400

246.1H+8.4αλ(7.95+H)

+(296.1+8.4αλ)cHctgβ

254.8H+8.4αλ(7.95+H)

+(304.8+8.4αλ)cHctgβ

263.4H+8.4αλ(7.95+H)

+(313.4+8.4αλ)cHctgβ

272H+8.4αλ (7.95+H)+

+(322+8.4αλ)cHctgβ

8.4α

Table 16

Traction force at the point 1 at deep buckets

Bucket width , mm

Traction force at the belt with , N

Traction force at the belt with , N

Traction force at the belt with , N

Traction force at the belt with , N

Elevator productivity, t/h

1

2

3

4

5

6

100

37H+5αλ+

+57cHctgβ

39.2H+5αλ+

+59.2cHctgβ

41.3H+5αλ+

+61.3cHctgβ

43.5H+5αλ+

+63.5cHctgβ

α

125

36.4H+6.5αλ+

+56.4cHctgβ

39H+6.5αλ+

+59cHctgβ

41.6H+6.5αλ+

+61.6cHctgβ

44.2H+6.5αλ+

+64.2cHctgβ

1.3α

160


47.7H+10αλ+

+67.7cHctgβ

51.1H+10αλ+

+71.1cHctgβ

54.6H+10αλ+

+74.6cHctgβ

58H+10αλ+

+78cHctgβ

End of table 16

Bucket width , mm


Traction force at the belt with , N

Traction force at the belt with , N

Traction force at the belt with , N

Traction force at the belt with , N

Elevator productivity, t/h

1

2

3

4

5

6

200

74.1H+16.2αλ+

+94.1cHctgβ

78.4H+16.2αλ+

+98.4cHctgβ

82.7H+16.2αλ+

+102.7cHctgβ

87H+16.2αλ+

+97cHctgβ

3.24α

250

103.6H+25αλ+

+123.6cHctgβ

108.8H+25αλ+

+128.8cHctgβ

113.9H+25αλ+

+133.9cHctgβ

119.1H+25αλ+

+139.1cHctgβ

320

138.1H+40αλ+

+158.1cHctgβ

145H+40αλ+

+165cHctgβ

151.1H+40αλ+

+171.1cHctgβ

158H+40αλ+

+178cHctgβ

Table 17

Traction force at the point 1 at shallow buckets

Bucket width , mm


Tractive effort at the belt with , N

Tractive effort at the belt with , N

Tractive effort at the belt with , N

Tractive effort at the belt with , N

Elevator productivity, t/h

100

32.1H+2.5αλ+

+52.1cHctgβ

34.3H+2.5αλ+

+54.3cHctgβ

36.4H+2.5αλ+

+56.4cHctgβ

38.6H+2.5αλ+

+58.6cHctgβ

0.5α

125

33.4H+3.3αλ+

+53.4cHctgβ

36H+3.3αλ+

+56cHctgβ

37.8H+3.3αλ+

+57.8cHctgβ

40.4H+3.3αλ+

+60.4cHctgβ

0.66α

160

41.5H+5.85αλ+

+61.5cHctgβ

44.9H+5.85αλ+

+64.9cHctgβ

48.4H+5.85αλ+

+68.4cHctgβ

51.8H+5.85αλ+

+71.8cHctgβ

1.17α

200

61.9H+9.35αλ+

+81.9cHctgβ

66.2H+9.35αλ+

+86.2cHctgβ

70.5H+9.35αλ+

+90.5cHctgβ

74.8H+9.35αλ+

+94.8cHctgβ

1.87α

250

79.1H+17.5αλ+

+99.1cHctgβ

84.3H+17.5αλ+

+104.3cHctgβ

89.4H+17.5αλ+

+109.4cHctgβ

94.6H+17.5αλ+

+114.6cHctgβ

3.5α

320

138.1H+27αλ+

+158.1cHctgβ

145H+27αλ+

+165cHctgβ

151.1H+27αλ+

+171.1cHctgβ

158H+27αλ+

+178cHctgβ

5.4α

400

246.1H+42αλ+

+271.1cHctgβ

254.8H+42αλ+

+279.8cHctgβ

263.4H+42αλ+

+288.4cHctgβ

272H+42αλ+

+297cHctgβ

8.4α

Table 18

Tractive effort on the drive drum at deep buckets

Bucket width , mm


Tractive effort at the belt with , N

Tractive effort at the belt with , N

Tractive effort at the belt with , N

Tractive effort at the belt with , N

Elevator productivity, t/h

1

2

3

4

5

6

100

5.9H+αλ(4+1.08H)+

+(30.7+1.08αλ)cHctgβ

6.3H+αλ (4+1.08H)+

+(31.1+1.08αλ)cHctgβ

6.6H+αλ (4+1.08H)+

+(31.4+1.08αλ)cHctgβ

7H+αλ (4+1.08H)+

+(31.8+1.08αλ)cHctgβ

α

125

5.82H+1.3αλ(4+1.08H)

+(30.6+1.4αλ) cHctgβ

6.2H+1.3αλ (4+1.08H)

+(31+1.4αλ) cHctgβ

6.7H+1.3αλ (4+1.08H)

+(31.5+1.4αλ) cHctgβ

7.1H+1.3αλ (4+1.08H)+

+(31.9+1.4αλ) cHctgβ

1.3α

160

7.63H+2αλ (4+1.08H)

+(32.4+2.16αλ) cHctgβ

8.2H+2αλ (4+1.08H)+

+(33+2.16αλ) cHctgβ

8.7H+2αλ (4+1.08H)+

+(33.5+2.16αλ) cHctgβ

9.3H+2αλ (4+1.08H)+

+(34.1+2.16αλ) cHctgβ

200

11.9H+3.24αλ(4+1.08H)

+(36.7+3.5αλ) cHctgβ

12.5H+3.24αλ(4+1.08H)

+(37.3+3.5αλ) cHctgβ

13.2H+3.24αλ(4+1.08H)

+(38 +3.5αλ) cHctgβ

13.9H+3.24αλ (4+1.08H)

+(38.7+3.5αλ) cHctgβ

3.24α

250

16.6H+5αλ (4+1.08H)+

+(41.4+5.4αλ) cHctgβ

17.4H+5αλ (4+1.08H)+

+(42.2+5.4αλ) cHctgβ

18.2H+5αλ (4+1.08H)+

+(43+5.4αλ) cHctgβ

19.1H+5αλ (4+1.08H)+

+(43.9+5.4αλ) cHctgβ

320

22.1H+8αλ (4+1.08H)+

+(46.9+8.64αλ) cHctgβ

23.2H+8αλ (4+1.08H)+

+(48+8.64αλ) cHctgβ

24.2H+8αλ (4+1.08H)+

+(49+8.64αλ) cHctgβ

25.3H+8αλ (4+1.08H)+

+(50.1+8.64αλ) cHctgβ

400

42.5H+12.6αλ(4+1.08H)

+(73.5+13.6αλ) cHctgβ

43.9H+12.6αλ(4+1.08H)

+(74.9+13.6αλ) cHctgβ

45.3H+12.6αλ(4+1.08H)

+(76.3+13.6αλ) cHctgβ

46.7H+12.6αλ (4+1.08H)

+(77.7+13.6αλ) cHctgβ

12.6α

500

55.2H+19αλ (4+1.08H)+

+(101.7+20.5αλ) cHctgβ

57H+19αλ (4+1.08H)+

+(103.5+20.5αλ) cHctgβ

58.8H+19αλ (4+1.08H)

+(105.3+20.5αλ) cHctgβ

60.6H+19αλ (4+1.08H)

+(107.1+20.5αλ) cHctgβ

19α

650

70.1H+28.6αλ(4+1.08H)

+(167.8+30.9αλ) cHctgβ

72.3H+28.6αλ(4+1.08H)

+(170+30.9αλ) cHctgβ

74.5H+28.6αλ(4+1.08H)

+(172.2+30.9αλ) cHctgβ

76.7H+28.6αλ (4+1.08H)

+(174.4+30.9αλ) cHctgβ

28.6α

800

70.9H+40αλ (4+1.08H)

+(196+43.2αλ) cHctgβ

73.7H+40αλ (4+1.08H)

+(198.8+43.2αλ) cHctgβ

76.4H+40αλ (4+1.08H)

+(201.5+43.2αλ) cHctgβ

79.2H+40αλ (4+1.08H)

+(204.3+43.2αλ) cHctgβ

40α

1000

83.9H+56.3αλ(4+1.08H)

+(202.9+60.8αλ) cHctgβ

87.2H+56.3αλ(4+1.08H)

+(206.2+60.8αλ) cHctgβ

90.6H+56.3αλ(4+1.08H)

+(209.6+60.8αλ) cHctgβ

93.9H+56.3αλ (4+1.08H)

+(212.9+60.8αλ) cHctgβ

56.25α









Table 19

Tractive effort on the drive drum at shallow buckets

Bucket width , mm

Tractive effort at the belt with , N , N

Tractive effort at the belt with , N , N

Tractive effort at the belt with , N , N

Tractive effort at the belt with , N , N

Elevator productivity, t/h

100

5.1H+αλ (4+1.08H)+

+(30+1.08αλ) cHctgβ

5.5H+αλ (4+1.08H)+

+(30.3+1.08αλ)cHctgβ

5.8H+αλ (4+1.08H)+

+(30.6+1.08αλ)cHctgβ

6.2H+αλ (4+1.08H)+

+(31+1.08αλ) cHctgβ

0.5α

125

5.3H+1.3αλ(4+1.08H)

+(30.1+1.4αλ) cHctgβ

5.8H+1.3αλ(4+1.08H)

+(30.6+1.4αλ) cHctgβ

6.0H+1.3αλ(4+1.08H)

+(30.8+1.4αλ) cHctgβ

6.5H+1.3αλ(4+1.08H)

+(31.3+1.4αλ) cHctgβ

0.66α

160

6.6H+2αλ (4+1.08H)+

+(31.4+2.16αλ)cHctgβ

7.2H+2αλ (4+1.08H)+

+(32+2.16αλ) cHctgβ

7.7H+2αλ (4+1.08H)+

+(32.5+2.16αλ)cHctgβ

8.3H+2αλ (4+1.08H)+

+(33.1+2.16αλ)cHctgβ

1.17α

200

9.9H+3.24αλ(4+1.08H)

+(34.7+3.5αλ) cHctgβ

10.6H+3.24αλ(4+1.08H)

+(35.4+3.5αλ) cHctgβ

11.3H+3.24αλ(4+1.08H)

+(36.1+3.5αλ) cHctgβ

12H+3.24αλ (4+1.08H)+

+(36.8+3.5αλ) cHctgβ

1.87α

250

12.7H+5αλ (4+1.08H)+

+(37.5+5.4αλ) cHctgβ

13.5H+5αλ (4+1.08H)+

+(38.3+5.4αλ) cHctgβ

14.3H+5αλ (4+1.08H)+

+(39.1+5.4αλ) cHctgβ

15.1H+5αλ (4+1.08H)+

+(39.9+5.4αλ) cHctgβ

3.5α

320

22.1H+8αλ (4+1.08H)+

+(46.9+8.6αλ) cHctgβ

23.2H+8αλ (4+1.08H)+

+(48+8.6αλ) cHctgβ

24.2H+8αλ (4+1.08H)+

+(49+8.6αλ) cHctgβ

25.3H+8αλ (4+1.08H)+

+(50.1+8.6αλ) cHctgβ

5.4α

400

39.4H+12.6αλ(4+1.08H)

+(70.4+13.6αλ) cHctgβ

40.8H+12.6αλ(4+1.08H)

+(71.8+13.6αλ) cHctgβ

42.1H+12.6αλ(4+1.08H)

+(73.1+13.6αλ) cHctgβ

43.5H+12.6αλ(4+1.08H)

+(74.5+13.6αλ) cHctgβ

8.4α



Estimated kinematic scheme of the elevator’s drive is shown in the Fig. 2.

Fig. 2. Scheme of bucket elevator drive:
1 – engine; 2 – elastic clutch; 3 – locking device (ratchet); 4 – reducing gear; 5 – chain transmission; 6 – drive drum; 7 – belt

Efficiency coefficient of the drive is determined by the formula:

, (20)

where – efficiency coefficient of reducing gear; – efficiency coefficient of chain transmission; – efficiency coefficient of clutch.

Thus,

.

Engine power is determined by the formula:

. (21)

Calculated power of the engine is determined by the formula:

, (22)

where is the safety factor.

Since and then using the formulas (21) and (22) we obtain the following:

. (23)

Dependence of the calculated engine power on the values of design performance, bucket type, number of insert plies of the belt, speed of the belt movement and lifting height of cargo calculated using the formula (23) taking into account data from the Tables 18-19 are summarized in the Tables 20-21:

Table 20

Calculated power of engine at deep buckets

Bucket width , mm

Engine power at the belt with , W

Engine power at the belt with , W

Engine power at the belt with , W

Engine power at the belt with , W

Elevator productivity, t/h

1

2

3

4

5

6

100

v [5.9H+αλ (4+1.08H)+

+(30.7+1.08αλ)cHctgβ]

v [6.3H+αλ (4+1.08H)+

+(31.1+1.08αλ)cHctgβ]

v [6.6H+αλ (4+1.08H)+

+(31.4+1.08αλ)cHctgβ]

v[7H+αλ (4+1.08H)+

+(31.8+1.08αλ) cHctgβ]

α

125

[5.82H+1.3αλ(4+1.08H)

+(30.6+1.4αλ)cHctgβ]v

[6.2H+1.3αλ (4+1.08H)

+(31+1.4αλ) cHctgβ]v

[6.7H+1.3αλ (4+1.08H)

+(31.5+1.4αλ) cHctgβ]v

[7.1H+1.3αλ(4+1.08H)+

+(31.9+1.4αλ)cHctgβ]v

1.3α

160

v[7.63H+2αλ (4+1.08H)

+(32.4+2.16αλ) cHctgβ]

[8.2H+2αλ (4+1.08H)+

+(33+2.16αλ) cHctgβ]v

[8.7H+2αλ (4+1.08H)+

+(33.5+2.16αλ)cHctgβ]v

v[9.3H+2αλ (4+1.08H)+

+(34.1+2.16αλ) cHctgβ]

200

[11.9H+3.2αλ(4+1.08H)

+(36.7+3.5αλ) cHctgβ]v

[12.5H+3.2αλ(4+1.08H)

+(37.3+3.5αλ) cHctgβ]v

[13.2H+3.2αλ(4+1.08H)

+(38 +3.5αλ) cHctgβ]v

[13.9H+3.2αλ(4+1.08H)

+(38.7+3.5αλ) cHctgβ]v

3.24α

250

[16.6H+5αλ (4+1.08H)+

+(41.4+5.4αλ) cHctgβ]v

[17.4H+5αλ (4+1.08H)+

+(42.2+5.4αλ) cHctgβ]v

[18.2H+5αλ(4+1.08H)+

+(43+5.4αλ)cHctgβ]v

[19.1H+5αλ (4+1.08H)+

+(43.9+5.4αλ) cHctgβ]v

320

[22.1H+8αλ (4+1.08H)+

+(46.9+8.64αλ)cHctgβ]v

[23.2H+8αλ (4+1.08H)+

+(48+8.64αλ) cHctgβ]v

[24.2H+8αλ (4+1.08H)+

+(49+8.64αλ)cHctgβ]v

[25.3H+8αλ (4+1.08H)+

+(50.1+8.64αλ)cHctgβ]v

400

[42.5H+12.6αλ(4+1.08H)

+(73.5+13.6αλ) cHctgβ]v

[43.9H+12.6αλ(4+1.08H)

+(74.9+13.6αλ) cHctgβ]v

[45.3H+12.6αλ(4+1.08H)

+(76.3+13.6αλ) cHctgβ]v

[46.7H+12.6αλ(4+1.08H)

+(77.7+13.6αλ) cHctgβ]v

12.6α

500

[55,2H+19αλ (4+1,08H)+

+(101,7+20,5αλ)cHctgβ]v

v[57H+19αλ (4+1,08H)+

+(103,5+20,5αλ) cHctgβ]

v[58,8H+19αλ (4+1,08H)

+(105,3+20,5αλ) cHctgβ]

v[60,6H+19αλ (4+1,08H)

+(107,1+20,5αλ) cHctgβ]

19α

650

[70,1H+28,6αλ(4+1,08H)

+(167,8+30,9αλ)cHctgβ]v

[72,3H+28,6αλ(4+1,08H)

+(170+30,9αλ) cHctgβ]v

[74,5H+28,6αλ(4+1,08H)

+(172,2+30,9αλ)cHctgβ]v

[76,7H+28,6αλ(4+1,08H)

+(174,4+30,9αλ)cHctgβ]v

28,6α

800

[70,9H+40αλ (4+1,08H)

+(196+43,2αλ) cHctgβ]v

[73,7H+40αλ (4+1,08H)

+(198,8+43,2αλ)cHctgβ]v

[76,4H+40αλ (4+1,08H)

+(201,5+43,2αλ)cHctgβ]v

[79,2H+40αλ (4+1,08H)

+(204,3+43,2αλ)cHctgβ]v

40α

1000

[83,9H+56,3αλ(4+1,08H)

+(202,9+60,8αλ)cHctgβ]v

[87,2H+56,3αλ(4+1,08H)

+(206,2+60,8αλ)cHctgβ]v

[90,6H+56,3αλ(4+1,08H)

+(209,6+60,8αλ)cHctgβ]v

[93,9H+56,3αλ(4+1,08H)

+(212,9+60,8αλ)cHctgβ]v

56,25α



Table 21

Calculated power of engine at shallow buckets

Bucket width , mm

Engine power at the belt with , W

Engine power at the belt with , W

Engine power at the belt with , W

Engine power at the belt with , W

Elevator productivity, t/h

100

[5,1H+αλ (4+1,08H)+

+(30+1,08αλ) cHctgβ]v

v[5,5H+αλ (4+1,08H)+

+(30,3+1,08αλ) cHctgβ]

v[5,8H+αλ (4+1,08H)+

+(30,6+1,08αλ) cHctgβ]

v[6,2H+αλ (4+1,08H)+

+(31+1,08αλ) cHctgβ]

0,5α

125

[5,3H+1,3αλ(4+1,08H)+

+(30,1+1,4αλ) cHctgβ]v

[5,8H+1,3αλ(4+1,08H)+

+(30,6+1,4αλ) cHctgβ]v

[6,0H+1,3αλ(4+1,08H)+

+(30,8+1,4αλ) cHctgβ]v

[6,5H+1,3αλ(4+1,08H)+

+(31,3+1,4αλ) cHctgβ]v

0,66α

160

[6,6H+2αλ (4+1,08H)+

+(31,4+2,16αλ)cHctgβ]v

[7,2H+2αλ (4+1,08H)+

+(32+2,16αλ) cHctgβ]v

[7,7H+2αλ (4+1,08H)+

+(32,5+2,16αλ)cHctgβ]v

[8,3H+2αλ (4+1,08H)+

+(33,1+2,16αλ)cHctgβ]v

1,17α

200

[9,9H+3,24αλ (4+1,08H)

+(34,7+3,5αλ) cHctgβ]v

[10,6H+3,2αλ(4+1,08H)

+(35,4+3,5αλ) cHctgβ]v

[11,3H+3,2αλ(4+1,08H)

+(36,1+3,5αλ) cHctgβ]v

[12H+3,24αλ(4+1,08H)

+(36,8+3,5αλ) cHctgβ]v

1,87α

End of table 21

Bucket width , mm

Engine power at the belt with , W

Engine power at the belt with , W

Engine power at the belt with , W

Engine power at the belt with , W

Elevator productivity, t/h

250

[12,7H+5αλ(4+1,08H)+

+(37,5+5,4αλ) cHctgβ]v

[13,5H+5αλ (4+1,08H)+

+(38,3+5,4αλ) cHctgβ]v

[14,3H+5αλ (4+1,08H)+

+(39,1+5,4αλ) cHctgβ]v

[15,1H+5αλ (4+1,08H)+

+(39,9+5,4αλ) cHctgβ]v

3,5α

320

[22,1H+8αλ (4+1,08H)+

+(46,9+8,6αλ) cHctgβ]v

[23,2H+8αλ (4+1,08H)+

+(48+8,6αλ) cHctgβ]v

[24,2H+8αλ (4+1,08H)+

+(49+8,6αλ) cHctgβ]v

[25,3H+8αλ (4+1,08H)+

+(50,1+8,6αλ) cHctgβ]v

5,4α

400

[39,4H+12,6αλ(4+1,08H)

+(70,4+13,6αλ) cHctgβ]v

[40,8H+12,6αλ(4+1,08H)

+(71,8+13,6αλ) cHctgβ]v

[42,1H+12,6αλ(4+1,08H)

+(73,1+13,6αλ) cHctgβ]v

[43,5H+12,6αλ(4+1,08H)

+(74,5+13,6αλ) cHctgβ]v

8,4α



Findings

Let us analyze the influence of design parameters of inclined bucket elevator for transportation of fine coal on the power of required drive. Taking into account the physical and mechanical properties of fine coal according to the recommendations presented in the work [9] it was selected the belt elevator with spaced deep buckets and centrifugal discharge. The speed of belt movement is m/s; fill factor of the bucket; t/m3 density of fine coal; lift height of the cargo m; inclination angle of elevator to the horizontal .

Under these conditions the coefficient are:

(t m/l h);

. (N/m)

At this the dependence of calculated power of electric engine of the elevator’s bucket on the design performance is given in the Table 22:

Table 22

Calculated power of the engine at deep buckets

Bucket width , mm

Engine power at the belt with , W

Engine power at the belt with , W

Engine power at the belt with , W

Engine power at the belt with , W

Elevator productivity, t/h

100

520

533

543

555

4.61

125

614

627

651

670

6

160

899

918

934

953

9.22

200

1438

1457

1480

1502

14.9

250

2158

2184

2210

2239

23.1

320

3306

3341

3373

3409

36.9

400

5452.5

5493

5538

5588

58.1











End of table 22

Bucket width , mm

Engine power at the belt with , W

Engine power at the belt with , W

Engine power at the belt with , W

Engine power at the belt with , W

Elevator productivity, t/h

500

7935

7988

8045

8109

87.6

650

11533

11603

11673

11746

131.8

800

15251

15341

15430

15519

184.4

1000

20939

21039

21144

21261

259.3


Taking into account standard values of power of three-phase asynchronous squirrel cage motors of 4A series with synchronous frequency of rotation 1000 rev/min for the drive of inclined elevator for transportation of fine coal it was compiled the table of correspondence of design performance and the required engine power.

Analyzing results of calculations presented in the Table 23 it can be concluded that the dependence of elevator drive power on its design performance (at fixed lift height, type of cargo, the angle of inclination to horizontal) in general is a piecewise constant monotonically increasing function. At this the productivity values given in the last column of the Table 23 should be considered as such, in which the power value varies and is equal to the appropriate value given in the second column of the Table 23. But to the value of 4.61 t/h the power is 0.75 kW due to the minimum of such power in the engines of such class. According to calculations it was plotted the dependence of inclined elevator drive for fine coal transportation on the value of design productivity (Fig. 3).

To determine the graphic dependence of elevator drive power on its inclination angle we take the initial data: transported material – fine coal; productivity t/h lift height m; speed of the belt movement m/sec.

Taking into account the fact that and t/h for calculation of drive power the dependency in the 5th line and first column will be used (Tab. 20).

Substituting the initial data for calculation into resulting dependence we obtain:

. (24)

Graphic dependence of value of elevator drive power when transporting fine coal with design productivity t/h on the angle of its inclination within is presented in the Fig. 4.

Table 23

Engine power at shallow buckets

Bucket width , mm

Engine power , kW

Engine type

Elevator productivity, t/h

100

125

160

200

250

320

400

500

650

800

1000

0.75

0.75

1.1

1.5

2.2

4.0

5.5

11.0

15.0

18.5

30

4А80А6У3

4А80А6У3

4А80В6У3

4А90L6У3

100L6У3

112MВ6У3

132S6У3

160S6У3

160M6У3

180M6У3

200M6У3

4.61

6

9.22

14.9

23.1

36.9

58.1

87.6

131.8

184.4

259.3



Fig. 3. Dependence of elevator drive power
on the productivity

Fig. 4. Dependence of elevator drive power
on the angle of inclination

Originality and practical value

It was plotted the analytical dependence of elevator drive power on its design parameters (type and characteristics of the cargo, lifting height, inclination angle, productivity), which takes into account the standard sizes and types of buckets and belts.

Using this dependence makes it possible rapid determination of the approximate value of drive power of inclined elevators with deep and shallow buckets and performing high-quality selection of its key elements at the specific design characteristics.

Based on the proposed dependences it was plotted graphic dependence of power influence of required inclined elevator’s drive on design productivity at the fixed lift height, inclination angle, and the type of cargo. It was also presented the graphic dependence of drive power on the inclination angle of elevator at the other fixed design parameters.

Conclusions

For inclined belt bucket elevators it was plotted analytical dependence of the drive power value on its design parameters. This makes it possible to obtain the required drive power value taking into account the type and physical and mechanical properties of the cargo, the value of lift height, inclination angle, design productivity and working conditions, involving only one calculation formula. As an example of involving the obtained results it was considered the process of plotting the dependence of drive power on the design productivity of elevator for fine coal transportation. For such elevator it was plotted the parametric and graphic dependence of drive power on design productivity and inclination angle of elevator taking into account the standard parameters of buckets and properties of electric engines. It was established that the function of varying the value of elevator power on the design productivity (at fixed lifting height, type of cargo¸ inclination angle) is piecewise and monotonically increasing, and the dependence of elevator power value on its inclination angle (at fixed design productivity, lift height, load type, the speed of belt movement) is non-linear and monotonically decreasing.

LIST OF REFERENCE LINKS

  1. Александров, М. П. Подъемно-транспортные машины : учебник / М. П. Александров. – Москва : Высш. шк., 2000. – 522 с.

  2. Богомаз, В. М. Аналіз впливу проектних характеристик елеватору на параметри його приводу / В. М. Богомаз // Наука та прогрес транспорту. – 2015. – № 3 (57). – С. 162–175. doi: 10.15802/stp2015/46076.

  3. Богомаз, В. М. Дослідження впливу проектної продуктивності елеватору на потужність його приводу / В. М. Богомаз, К. Ц. Главацький, О. А. Мазур // Наука та прогрес транспорту. – 2015. – № 2 (56). – С. 189–206. doi: 10.15802/stp2015/42178.

  4. Богомаз, В. М. Дослідження залежності потужності приводу стрічкового конвеєру від його проектних параметрів / В. М. Богомаз // Наука та прогрес транспорту. – 2016. – № 1 (61). – С. 131–146. doi: 10.15802/stp2016/61024.

  5. Зенков, Р. Л. Машины непрерывного транспорта : учебник / Р. Л. Зенков, И. И. Ивашков, Л. Н. Колобов. – Москва : Машиностроение, 1987. – 432 с.

  6. Іванченко, Ф. К. Підйомно-транспортні машини : підручник / Ф. К. Іванченко. – Київ : Вища шк., 1993. – 413 с.

  7. Катрюк, И. С. Машины непрерывного транспорта. Конструкции, проектирование и эксплуатация : учеб. пособие / И. С. Катрюк, Е. В. Мусияченко. – Красноярск : ИПЦ КГТУ, 2006. – 266 с.

  8. Кузьмин, А. В. Справочник по расчетам механизмов подъемно-транспортных машин : учеб. пособие. Минск : Высш. шк., 1983. – 350 с.

  9. Підйомно-транспортні машини: розрахунки підіймальних і транспортувальних машин : підручник / В. С. Бондарєв, О. І. Дубинець, М. П. Колісник [та ін.]. – Київ : Вища шк., 2009. – 734 с.

  10. Ракша, С. В. Аналіз впливу пружних деформацій несучого каната на зусилля в тяговому канаті підвісної дороги / С. В. Ракша, Ю. К. Горячов, О. С. Куроп’ятник // Наука та прогрес транспорту. – 2013. – № 6 (48). – С. 110–119. doi: 10.15802/stp2013/19686.

  11. Расчет и проектирование транспортных средств непрерывного действия : науч. пособие для вузов / А. И. Барышев, В. А. Будишевский, А. А. Сулима, А. М. Ткачук. – Донецк : Норд-Пресс, 2005. – 689 с.

  12. Ромакин, Н. Е. Машины непрерывного транспорта : учеб. пособие / Н. Е. Ромакин. – Москва : Издательский дом «Академия», 2008. – 432 с.

  13. Askari, H. Nonlinear Oscillations Analysis of the Elevator Cable in a Drum Drive Elevator System / H. Askari, D. Younesian, Z. Saadatnia // Advances in Applied Mathematics and Mechanics. – 2015. – Vol. 7. – Iss. 01. – P. 4357. doi: 10.4208/aamm.2013.m225.

  14. Failure Analysis on Conveyer Chain Links of a Central Bucket Elevator / J. Yin, O. Muvengei, J. Kihiu, K. Njoroge / J. of Mechanical and Civil Engineering. 2016. Vol. 13. – Iss. 04. – P. 5663. doi: 10.9790/1684-1304075663.

  15. Li, S. C. Study on Elevator Drive System Dynamics Simulation of Rail Transport Conveyer / S. C. Li, X. J. Wang // Applied Mechanics and Materials. 2014. Vol. 511512. P. 619622. doi: 10.4028/www.scientific.net/amm.511-512.619.

В. М. Богомаз1*, М. В. БОРЕНКО2*, С. В. ПАЦАНОВСЬКИЙ3*, О. О. ТКАЧОВ4*

1*Каф. «Військова підготовка спеціалістів Державної спеціальної служби транспорту», Дніпропетровський
національний університет залізничного транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпро, Україна, 49010, тел. +38 (056) 373 19 09, ел. пошта wbogomas@i.ua, ORCID 0000-0001-5913-2671
2*Каф. «Військова підготовка спеціалістів Державної спеціальної служби транспорту», Дніпропетровський
національний університет залізничного транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпро, Україна, 49010, тел. +38 (056) 373 19 09, ел. пошта bmw1961@ukr.net, ORCID 0000-0001-9578-3906
3*Каф. «Військова підготовка спеціалістів Державної спеціальної служби транспорту», Дніпропетровський
національний університет залізничного транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпро, Україна, 49010, тел. +38 (056) 373 19 09, ел. пошта psven68@i.ua, ORCID 0000-0002-1628-3733
4*Каф. «Військова підготовка спеціалістів Державної спеціальної служби транспорту», Дніпропетровський
національний університет залізничного транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпро, Україна, 49010, тел. +38 (056) 373 19 09, ел. пошта otkachov@i.ua, ORCID 0000-0002-1857-7567

АНАЛІЗ ВПЛИВУ ПРОЕКТНИХ

ХАРАКТЕРИСТИК ПОХИЛОГО

КОВШОВОГО ЕЛЕВАТОРУ

НА ПОТУЖНІСТЬ ЙОГО ПРИВОДУ

Мета. Одним із основних елементів похилих стрічкових ковшових елеваторів є їх привід. Для визначення потужності приводу необхідно провести розрахунки за стандартними методиками, які приведені в сучасній літературі. Основними проектними параметрами таких елеваторів є продуктивність, висота підйому, тип та властивості транспортованого вантажу, кут нахилу. В роботі необхідно побудувати параметричну залежність потужності приводу елеватору від його проектних параметрів, яка враховувала б стандартні розміри і типи ковшів та стрічок. Методика. Використовуючи методику тягового розрахунку похилих стрічкових ківшевих елеваторів, побудовано параметричні залежності зусиль у характерних точках траси елеватору, а також залежності потужності приводу швидкохідних елеваторів із глибокими та мілкими ковшами від їх проектних параметрів та характеристик. Результати. На основі побудованих параметричних залежностей встановлено, що функція зміни величини потужності елеватору від проектної продуктивності (при фіксованих висоті підйому, типі вантажу, куті нахилу) є кусково-сталою та монотонно зростаючою. Побудовано графічну залежність потужності приводу елеватору від кута нахилу в допустимих межах його зміни. Отримана залежність є нелінійною та монотонно спадаючою. Визначені в загальному вигляді інтервали проектних значень продуктивності, що забезпечують постійну величину потужності приводу похилого елеватору. В якості прикладу залучення отриманих результатів розглянуто процес побудови залежностей потужності приводу від проектної продуктивності та кута нахилу елеватору для транспортування дрібного вугілля. Наукова новизна. Авторами вперше побудовані параметричні залежності потужності приводу похилого ківшевого елеватору від його проектних параметрів, які враховують стандартні розміри і типи ковшів та стрічок. Практична значимість. Використання побудованих залежностей дає можливість відносно швидкого визначення приблизного значення потужності приводу похилих швидкохідних елеваторів із глибокими та мілкими ковшами на стадії проектування, а також можливо виконати якісний підбір його основних елементів при конкретних проектних характеристиках: тип вантажу, продуктивність, висота підйому, кут нахилу.

Ключові слова: похилий елеватор; ківш; привід; потужність; продуктивність; вантаж; кут нахилу

В. Н. Богомаз1*, Н. В. Боренко2*, С. В. ПАЦАНОВСКИЙ3*, А. А. Ткачов4*

1*Каф. «Военная подготовка специалистов Государственной специальной службы транспорта», Днепропетровский
национальний университет железнодорожного транспорта имени академика В. Лазаряна, вул. Лазаряна, 2, Днипро,
Украина, 49010, тел. +38 (056) 373 19 09, эл. почта wbogomas@i.ua, ORCID 0000-0001-5913-2671
2*Каф. «Военная подготовка специалистов Государственной специальной службы транспорта», Днепропетровский
национальний университет железнодорожного транспорта имени академика В. Лазаряна, вул. Лазаряна, 2, Днипро,
Украина, 49010, тел. +38 (056) 373 19 09, эл. почта bmw1961@ukr.net, ORCID 0000-0001-9578-3906
3*Каф. «Военная подготовка специалистов Государственной специальной службы транспорта», Днепропетровский
национальний университет железнодорожного транспорта имени академика В. Лазаряна, вул. Лазаряна, 2, Днипро,
Украина, 49010, тел. +38 (056) 373 19 09, эл. почта psven68@i.ua, ORCID 0000-0002-1628-3733
4*Каф. «Военная подготовка специалистов Государственной специальной службы транспорта», Днепропетровский
национальний университет железнодорожного транспорта имени академика В. Лазаряна, вул. Лазаряна, 2, Днипро,
Украина, 49010, тел. +38 (056) 373 19 09, эл. почта otkachov@i.ua, ORCID 0000-0002-1857-7567

АНАЛИЗ ВЛИЯНИЯ ПРОЕКТНЫХ

ХАРАКТЕРИСТИК НАКЛОННОГО

КОВШЕВОГО ЭЛЕВАТОРА

НА МОЩНОСТЬ ЕГО ПРИВОДА

Цель. Одним из основных элементов наклонных ленточных ковшовых элеваторов является их привод. Для определения мощности привода необходимо провести расчеты по стандартным методикам, которые изложены в современной литературе. Основными проектными параметрами являются производительность, высота подъема, тип и свойства транспортированного материала, угол наклона. В работе необходимо построить параметрическую зависимость мощности привода элеватора от его проектных параметров, которая учитывала бы стандартные размеры и типы ковшей и лент. Методика. Используя методику тягового расчета наклонных ленточных ковшовых элеваторов, построены параметрические зависимости усилий в характерных точках трассы элеватора, а также зависимости мощности привода быстроходных элеваторов с глубокими и мелкими ковшами от их проектных параметров и характеристик. Результаты. На основе построенных параметрических зависимостей установлено, что функция изменения величины мощности элеватора от проектной производительности (при фиксированных высоте подъема, типе груза, скорости движения ленты) является кусочно-постоянной и монотонно возрастающей. Построена графическая зависимость мощности привода элеватора от угла наклона в допустимых пределах его изменения. Полученная зависимость является нелинейной и монотонно убывающей. Определены в общем виде интервалы проектных значений производительности, которые обеспечивают постоянную величину мощности привода наклонного элеватора. В качестве примера применения полученных результатов рассмотрен процесс построения зависимости мощности привода от проектной производительности и угла наклона элеватора для транспортировки мелкого угля. Научная новизна. Авторами впервые построены параметрические зависимости мощности привода наклонного ковшевого элеватора от его проектных параметров, которые учитывают стандартные размеры и типы ковшей и лент. Практическая значимость. Использование построенных зависимостей дает возможность относительно быстрого определения приблизительного значения мощности привода наклонных быстроходных элеваторов с глубокими и мелкими ковшами на стадии проектирования. А также можно выполнить качественный подбор его основных элементов при конкретных проектных характеристиках: типе груза, производительности, высоте подъема, угле наклона.

Ключевые слова: наклонный элеватор; ковш; привод; мощность; производительность; груз; угол наклона

REFEReNCEs

  1. Aleksandrov M.P. Podyemno-transportnyye mashiny [Handling machinery]. Moscow, Vysshaya shkola Publ., 2000. 522 p.

  2. Bohomaz V.M. Analiz vplyvu proektnykh kharakterystyk elevatoru na parametry yoho pryvodu [Influence analyses of designed characteristics of the elevator to the parameters of its drive]. Nauka ta prohres transportu – Science and Transport Progress, 2015, no. 3 (57), pp. 162-175. doi: 10.15802/stp2015/46076.

  3. Bohomaz V.M., Hlavatskyi K.Ts., Mazur O.A. Doslidzhennia vplyvu proektnoi produktyvnosti elevatoru na potuzhnist yoho pryvodu [Research of influencing of project discriptions of elevator on parameters of its drive]. Nauka ta prohres transport – Science and Transport Progress, 2015, no. 2 (56), pp. 189-206. doi: 10.15802/stp2015/42178.

  4. Bohomaz V.M. Doslidzhennia zalezhnosti potuzhnosti pryvodu strichkovoho konveieru vid yoho proektnykh parametriv [Research of dependence of belt conveyer drive power on its design parameters]. Nauka ta prohres transportu – Science and Transport Progress, 2016, no. 1 (61), pp. 131-146. doi: 10.15802/stp2016/61024.

  5. Zenkov R.L., Ivashkov I.I., Kolobov L.N. Mashiny nepreryvnogo transporta [Stream-flow transportation machines]. Moscow, Mashinostroyeniye Publ., 1987. 432 p.

  6. Ivanchenko F.K. Pidiomno-transportni mashyny [Handling machinery]. Kyiv, Vyshcha shkola Publ., 1993. 413 p.

  7. Katryuk, I. S., Musiyachenko Ye.V. Mashiny nepreryvnogo transporta. Konstruktsii, proektirovaniye i ekspluatatsiya [Stream-flow transportation machines. Constructions, designing and operation]. Krasnoyarsk, IPTs KGTU Publ., 2006. 266 p.

  8. Kuzmin A.V. Spravochnik po raschetam mekhanizmov podyemno-transportnykh mashin [Reference book on calculation of mechanisms of handling machinery]. Minsk, Vysshaya shkola Publ., 1983. 350 p.

  9. Bondariev V.S., Dubynets O.I., Kolisnyk M.P. Pidiomno-transportni mashyny: rozrakhunky pidiimalnykh i transportuvalnykh mashyn [Handling machinery: calculations of lifting and transporting machines]. Kyiv, Vyshcha shkola Publ., 2009. 734 p.

  10. Raksha S.V., Horiachov Yu.K., Kuropiatnyk O.S. Analiz vplyvu pruzhnykh deformatsii nesuchoho kanata na zusyllia v tiahovomu kanati pidvisnoi dorohy [Influence analysis of elastic deformations of the track cable on efforts in the hauling rope of aerial ropeway]. Nauka ta prohres transportu – Science and Transport Progress, 2013, no. 6 (48), pp. 110-119. doi: 10.15802/stp2016/61024.

  11. Baryshev A.I., Budishevskiy V.A., Sulima A.A., Tkachuk A.M. Raschet i proyektirovaniye transportnykh sredstv nepreryvnogo deystviya [Calculation and design of stream-flow transportation machines]. Donetsk, Nord-Press Publ., 2005. 689p.

  12. Romakin N.Ye. Mashiny nepreryvnogo transporta [Stream-flow transportation machines]. Moscow, Akademiya Publ., 2008. 432 p.

  13. Askari H., Younesian D., Saadatnic Z. Nonlinear oscillations analysis of the elevator cable in a drum drive elevator system. Advances in Applied Mathematics and Mechanics, 2015, vol. 7, issue 01, pp. 43-57. doi: 10.4208/aamm.2013.m225.

  14. Yin J., Muvengei O., Kihiu J., Njoroge K. Failure analysis on conveyer chain links of a central bucket elevator. Journal of Mechanical and Civil Engineering, 2016, vol. 13, issue 04, pp. 56-63. doi: 10.9790/1684-1304075663.

  15. Li S.C., Wang X.J. Study on elevator drive system dynamics simulation of rail transport conveyer. Applied Mechanics and Materials, 2014, vol. 511-512, pp. 619-622. doi: 10.4028/www.scientific.net/amm.511-512.619.


Prof. S. V. Raksha, D. Sc. (Tech.); Associate Prof. S. V. Shatov, D. Sc. (Tech.) recommended this article to be published


Accessed: Sep. 07, 2016

Received: Dec. 29, 2016

doi © V. M. Bohomaz, M. V. Borenko, S. V. Patsanovskiy, O. O. Tkachov, 2016