ISSN 2307–3489 (Print), ІSSN 2307–6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського
національного університету залізничного транспорту, 201
6, 5 (65)



ТРАНСПОРТне будівництво

ТРАНСПОРТне будівництво

UDC 624.191.3

V. D. PETRENKO1*, O. L. TIUTKIN2*, S. T. PROSKURNIA3*

1*Dep. «Bridges and Tunnels», Dnipropetrovsk National University of Railway Transport named
after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 15 53,
e-mail 1937@gmail.com, ORCID 0000-0002-5902-6155
2*Dep. «Bridges and Tunnels», Dnipropetrovsk National University of Railway Transport named
after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (056) 373 15 53,
e-mail tutkin@mail.ru, ORCID 0000-0003-4921-4758
3*Main engineer of State Enterprise «Zachiddorvybuchprom», Ternopil, 46006, Gayova St.,47,
e-mail zvubyxprom@ukr.com, ORCID 0000-0004-4811-4325

FEATURES OF DRILLING-AND-BLASTING

AT CONSTRUCTION OF BESKIDSKIY TUNNEL

Purpose. In this article it is necessary to analyze the possibility of developing technology and increasing its efficiency during the Beskidskiy tunnel construction in difficult engineering and geological conditions. Methodology. The authors have performed analysis of the technological level of mining and construction works, new technique, equipment and production. One of the important issues of blasting operation is to ensure the seismic safety, acting at a distance of 30 m in the axes of single-track tunnel, as the distance to it will be 20 m from the nearest charge in the laying tunnel. This problem was solved by applying the combined blasting of blast-hole charges with delay-action and long-delay ways. Herewith the total mass of charges in the stope was divided into three groups, in which the first group is exploded by short-delay firing with, and the second one is exploded by short-delay firing too with intervals of 200400 ms, the third is exploded by long-delay blasting at intervals of 500…10000 ms. The combined blasting of short-delay charges and delay action ones let significantly reduce seismic action at a mass explosion of charges when driving of double-track railway tunnel of a large cross-section. Findings. The paper presents the developed technology model, describing dependence of the machines from engineering and geological conditions. The methodology of drilling and blasting works at the construction of the tunnel callote and stross as well as a technique of arrangement determination and intervals of shot-delay and delay blasting of blasthole explosive charges was developed. Maximum permissible concentration of gases and vapours at blasting was presented. The calculations showed that the maximum level of gas contamination of the working area in Beskidskiy tunnel is achieved at blast operations. In accordance with this ventilation of the tunnel when driving is carried out by independent systems with mechanical ventilation by blowing using mine fans of special mining enterprises. Originality. The developed seismically safety charge masses are based on the well-known state about antiseismic blasting regulations. Practical value. The authors proposed and grounded the efficient technology for reduction to practice of drilling and blasting works (with dividing of the tunnel cross-section into the calotte and stross during of the Beskydy high-mountain tunnel construction. The results of technological experiment are presented.

Keywords: drilling and blasting works; technology of high-mountain tunnel constructing; railway tunnel; blast seismic; shot-delay and delay charges

Introduction

In contemporary environment the construction of railway tunnels has found a widespread application in difficult engineering and geological conditions. The most significant example of this building is the construction of basic Gotthard tunnel in the Alps, length of 57.3 km, completion is scheduled for 2016 [3]. A distinctive feature of tunneling driving of such a type is the extensive use of tunnel boring machines in hard and strongest rocks.

However, drilling and blasting method for breaking rocks in the tunneling driving including the workings of large section can be successfully used in such conditions [14–16].

Purpose

In Ukraine, currently tunneling driving of Beskydskiy double-track tunnel in the Carpathians is being completed. It is under construction in order to increase rail logistics between Western and Eastern Europe with using tunnel. Its length is 1850 m. Alternation of rocks of different types and strength, including sandstone, siltstone and mudstone with Protodyakonov scale of hardness respectively 6…8, 4…6 and 2…3 occurs in geological structure on construction sites. Hydro-geological conditions are characterized by the expected inflow of water in the range of 5…10 m3/day. Tunneling driving of double-track railway tunnel is carried out with the division of the face on calotte and stross with the way of lower ledge using drilling-and-blasting operations (DBO) [8] in to “bricked-up windows” with movement overlapping of trains in the Beskydskiy acting tunnel, located 30 meters away from the tunnel under construction. Moreover, the existing single-track tunnel was built in 1886.

Drilling operations are carried out when driving with the help of a self-propelled double beam electro-hydraulic unit “Sandvik DT 820-C” from Finland. At this the diameter of holes is 45 mm, and their length is 1.5; 2.3; 2.8 m when calotte driving and 4.2…4.5 m in stross development. Correspondingly stope length, depending on the engineering and geological conditions when calotte driving is 1.25, 2.0 and 2.5 m, and stross one – 4.0…4.2 m.

Drilling of holes is produced by blowing with compressed air and water washing. Compressed air is supplied from the mobile compressor stations, located on near-entrance sites, and water via a pipeline that is laid as far as tunneling driving.

DBO nameplate is made at the stage of pre-production of works and refined accordingly to the results of at least three conducted test blastings [2, 11]. Breaking of rocks with blast-hole charges is provided to carry out using the method of successive contouring with mandatory application of delay-action and long-delay blasting of blast-hole charges groups in the following order depending on the stope size, mentioned above: coal-cutting, contour-hole, under contour, contour, plantar and under-bottom. Deceleration time (interval between multiple-shot blasting) taking into account rock hardness is from 20 to 10000 ms.

For blasting, the following blasting explosives are applied: ammonite № 6 ZhV – for dry and flooded holes, Grammonit 79.21 – for dry holes, ammonal M5 – for dry and flooded holes, gremix – for dry and flooded holes. At this cartridges of 28.32 and 36 mm are used [9].

At complex blasting operating two ways of charges blasting are applied: non-electric and electric [9, 10]. The non-electric initiation system (NIS) «Impulse» is used at non-electrical method. It includes the UNS-SH and UNS-ShK devices, detonating cord (DC), a main waveguide, connecting tube and the starting device. Unlike traditional methods of initiating explosive charges BB, this system has an increased level of security, since, due to insensitivity and stray currents it allows carrying out drilling works without de-energizing of power equipment. In electric mode NIS system «Impulse», UNS-SH device, UNS-ShK, DC and two detonators, type ED-1-3-T are also applied.

Methodology

One of the important issues of blasting operation is to ensure the seismic safety, acting at a distance of 30 m in the axes of single-track tunnel, as the distance to it will be 20 m from the nearest charge in the laying tunnel [1, 4, 6, 7, 13].

Seismic safety charge masses for complex engineering structures, like undoubtedly Beskydskiy tunnel is, can be calculated by the formula according to the work [5],

where – permissible critical velocity fluctuations, is determined from table 80 [5] and equal to ; – coefficient depending on the conditions of work and the state of the engineering object is accepted within ; – coefficient, which depends on the distance to the object, and equals to ; – coefficient depending on the geological and engineering conditions of works production and equals to ; – distance to the protected object, .

Taking ; ; , as the result

Consequently, there is a certain limit upon seismic at conducting of blasting operations with a maximum total charge BB on the stope when calotte driving of 163.5 kg.

Findings

Solving this problem was carried out by applying the combined blasting of blast-hole charges with delay-action and long-delay ways (Fig. 1).

At this the total mass of charges in the stope was divided into three groups, in which the first group is exploded by short-delay firing with slow intervals of 20200 ms, and the second one is exploded by short-delay firing too with intervals of 200400 ms, the third is exploded by long-delay blasting at intervals of 500…10000 ms. The total mass of blast-hole charges, length of 1.3 m according to the 1st DBO nameplate is 57.75 kg, blast-hole charges, length of 2.3 m – the 2nd DBO nameplate – 124.3 kg, blast-hole charges, length of 2.3 m, the 3d DBO nameplate – 163.5 kg. The total mass of the charges of the 1st group, length of 1.3 m is 19.5 kg (33.8 %), length of 2.3 m – 27.5 kg (22.1 %) and a length of 2.8 m – 33 kg (20.2 %). Also, the charges mass of the 2nd group, length of 1.3 m is 6.5 kg (11.2%), length of 2.3 m – 13.75 kg (11.1 %), length of 2.8 m – 16.5 kg (10.1 %). For charges of the 3rd group, length of 1.3 m charges mass is 31.75 kg (55.0 %), length of 2.3 m – 83.05 kg (66.8 %) and a length of 2.8 m – 114 kg (69.7 %).

Thus, the maximum charges mass in groups are less than the maximum permissible under the terms of seismic safety.

As follows from the analysis of presented data in the first group of charges using short-delay blasting with intervals of 20200 ms, wave interaction with the interference of longitudinal waves may occur. Charges blasting of the second group with an interval of 300400 ms is performed after 100 and 200 ms. During this period a longitudinal wave from the charges blasting of the first group at its speed in rocks with a hardness coefficient , equal to 2500…4000 m/s, will cover the distance from the blasting site of 250…400 m, namely the interaction of the waves and their interference are completely excluded.

Long-delay blasting of charges in the third group with intervals of 500…10000 ms will be performed with a significant margin in time and distance from the previous short-delay one. As a result the interaction of longitudinal waves in the subsequent blasting is completely excluded, which was confirmed by measuring the vibration velocity of rock in active tunnel, which were equal to 0.13…0.15 m/s.


Fig. 1. Circuit of the disposition and connection of explosive charges

Thus, the combined blasting of short-delay charges and delay action ones let significantly reduce seismic action at a mass explosion of charges when driving of double-track railway tunnel of
a large cross-section.

Originality and practical value

The choice of a rational system of ventilation in face working is of great importance in these conditions. In accordance with current safety regulations [9] and classic work upon the tunnel ventilation [12] in workings, where people may be, the air must contain at least 20 % of oxygen (by volume) in its composition. Carbon dioxide content in the air of working at the places of operation should not exceed 0.5%, and in the working with a common upward current – 0.75 %. In addition the air in active underground workings must be free of harmful substances exceeding the maximum permissible concentration (MPC), indicated in Table 1.

In accordance with the Safety specifications the amount of air required for working ventilation, should be calculated upon the largest number of people employed at the same time in underground works, quantity of harmful gases, calculated on a notional carbon monoxide in blasting operations, upon harmful gases from arc welding operations, as well as of harmful substances released during operation of machines and mechanisms with internal combustion engines.

The calculations showed that the maximum level of gas contamination of the working area in Beskidskiy tunnel is achieved at blasting operations, for which it is necessary to supply to the face of at least 165 m3/min of fresh air.

In accordance with this ventilation of the Beskidskiy tunnel when driving is carried out by independent systems with mechanical ventilation by blowing using mine the fans of “Donventilyator” enterprise. The main technical parameters of the fan are presented in Table 2.

Ventilation system operating principle is as follows. Airing face after blasting is carried out by air supply system from the Eastern portal with the help of an axial fan of the main airing, type IN-14-10D (Table 2) installed on near-entrance site. In the metal pipe with a diameter of 1600 mm made of sheet steel, thickness of 2 mm, fresh air is fed into the bottom-hole zone, which dilutes harmful gases and carries them over the working to the East portal. Along with plenum system also runs the local (near the face) exhaust system, which provides with CFT equipment (Kormann), de-dusting exhaust air before its release to the general air flow that moves over the working from the face up to the portal. As advance of face the air supply pipeline, consisting of 4 m long pipes, is increased (built up) to provide effective ventilation.

Table 1

Maximum permissible concentrations of harmful substances

Gases and vapours

Chemical formula

Maximum permissible concentration

% at volume

mg/m3

Carbonic oxide

CO

0,00240

20

Oxides of nitrogen in N2O3 equivalent

0,00010

5

Sulfur dioxide

SO2

0,00035

10

Hydrogen sulfide

H2S

0,00066

10

Acrolein

CH2=CH=CH=O

0,00008

0,2

Formaldehyde

H2C=O

0,00037

0,5

Hydrocarbons in carbon equivalent

300



Table 2

The main technical parameters of fans

п/п

Parameters of fans

FA-14-10D

VMEFA-12-110

1

Nominal impeller diameter, mm

1460

1200

2

Nominal feed, m3/s

35

32

3

Flow rate within the working zone, m3/s:

minimum, no less

maximum, no more



10

50



8

42

4

Maximum efficiency

0,83

0,74

5

Nominal full pressure, Pa

4700

2600

6

Revolutions per minute

1500

1500

7

Fan weight, kg

3650

2310


Conclusions

Thus, the high-level scientific and technical preparation of operational materials upon technology penetration in the rocks in difficult engineering and geological conditions allows solving the problem of building the most complex railway artificial construction – Beskydskiy tunnel.

LIST OF REFERENCE LINKS

  1. Артемов, В. А. Методические основы оценки сейсмического действия массовых взрывов по результатам анализа сейсмовзрывных продольных и поверхностных волн / В. А. Артемов, Г. П. Парамонов, А. Н. Холодилов // Взрывное дело. – Москва, 2012. – № 108-65. – С. 287–295.

  2. Безопасность буровзрывных работ в промышленности / под ред. Б. Н. Кутузова. – Москва : Недра, 1992. – 544 с.

  3. В Швейцарии открыт самый длинный в мире железнодорожный тоннель: 57 км. [Electronic resource]. Available at: https://geektimes.ru-/post/276720/. – Title from the screen. – Accessed : 20.09.2016.

  4. ДСТУ 4704: 2008. Проведення промислових вибухів. Норми сейсмічної безпеки. – Київ : Держспоживстандарт України, 2009. – 11 с.

  5. Кутузов, Б. Н. Разрушение горных пород взрывом : учеб. для вузов / Б. Н. Кутузов. – Москва : Изд-во МГИ, 1992. – 516 с.

  6. Петренко, В. Д. Аналіз аварійних ситуацій в тунелях, що споруджуються вибуховим способом / В. Д. Петренко, В. Т. Гузченко, О. М. Кулаженко // Проблеми та перспективи розвитку залізн. трансп. : тези 76 Міжнар. наук.-техн. конф. / Дніпропетр. нац. ун-т залізн. трансп. – Дніпропетровськ, 2016. – С. 184–185.

  7. Петренко, В. Д. Зниження сейсмічної дії при підриванні короткоуповільнених та уповіль-нених зарядів / В. Д. Петренко, О. Л. Тютькін, С. Т. Проскурня // Проблеми та перспективи розвитку залізн. трансп. : тези 76 Міжнар. наук.-техн. конф. / Дніпропетр. нац. ун-т залізн. трансп. – Дніпропетровськ , 2016. – С. 192–194.

  8. Петренко, В. Д. Розробка комплексу буровибухових робіт при проходці Бескідського тунелю / В. Д. Петренко, М. В. Герніч, В. В. Барашкін // Проблеми та перспективи розвитку залізн. трансп. : тези 76 Міжнар. наук.-техн. конф. / Дніпропетр. нац. ун-т залізн. трансп. – Дніпропетровськ, 2015. – С. 286–287.

  9. Полянкин, Г. Н. Буровзрывные работы в тоннелестроении : учеб. для вузов ж.-д. трансп. / Г. Н. Полянкин. – Москва : ГОУ «Учеб.-метод. центр по образованию на ж.-д. трансп.», 2007. – 375 с.

  10. Способи ініціювання зарядів вибухових речовин : навч. посіб. / В. В. Соболєв, А. В. Чернай, В. М. Чебенко, О. В. Скобенко. – Дніпро-петровскьк : ЛізуновПрес, 2013. – 88 с.

  11. Справочник взрывника / Б. Н. Кутузов, В. М. Скоробогатов, И. Е. Ерофеев [и др.] / под общ. ред. Б. Н. Кутузова. – Москва : Недра, 1988. – 511 с.

  12. Фомичев, В. И. Вентиляция тоннелей и подземных сооружений / В. И. Фомичев. – Ленинград : Стройиздат, Ленингр. отделение, 1991. – 200 с.

  13. Эстеров, Я. Х. Буровзрывные работы на транспортном строительстве : учеб. для техникумов / Я. Х. Эстеров, Е. Ю. Бродов, М. И. Иванаев. – Москва : Транспорт, 1983. – 328 с.

  14. Boidy, E. Rock analysis of time-dependent behavior of a test gallery in claystone / E. Boidy, A. Bouvard, F. Pellet // Tunneling and Underground Space Technology. – 2002. – Vol. 17. – Iss. 4. – P. 415–424. doi: 10.1016/s0886-7798(02)00066-4.

  15. Erion, P. Construction Time Analysis For Different Steps In Drill – And – Blast Method Of Hydro Power Tunnel Excavation / P. Erion, A. Algest // J. of Engineering Research and Applications. – Vol. 5. – Iss. 1 (Part 1). – 2015. – P. 95–101.

  16. Patnik, K. K. Uncertainty analysis of tunnel squeezing for two tunnel cases from Nepal Himalaya / K. K. Patnik, B. Nirsen // Intern. J. of Rock Mechanics and Mining Sciences. – 2007. – Vol. 44. – Iss. 1. – P. 67–76. doi: 10.1016/j.ijrm-ms.2006.04.013.

В. Д. ПЕТРЕНКО1*, О. Л. ТЮТЬКІН2*, С. T. ПРОСКУРНЯ3*

1*Каф. «Мости і тунелі», Дніпропетровський національний університет залізничного транспорту імені академіка
В. Лазаряна
, вул. Лазаряна, 2, Дніпро, Україна, 49010, тел. +38 (056) 373 15 53, ел. пошта 1937@gmail.com,
ORCID 0000-0002-5902-6155
2*Каф. «Мости і тунелі», Дніпропетровський національний університет залізничного транспорту імені академіка
В. Лазаряна
, вул. Лазаряна, 2, Дніпро, Україна, 49010, тел. +38 (056) 373 15 53, ел. пошта tutkin@mail.ru,
ORCID 0000-0003-4921-4758
3*Держ. підприємство «Західдорвибухпром», вул. Гайова, 47, Тернопіль, 46006, ел. пошта zvubyxprom@ukr.com,
ORCID 0000-0004-4811-4325

ОСОБЛИВОСТІ КОМПЛЕКСУ БУРОВИБУХОВИХ РОБІТ

ПРИ БУДІВНИЦТВІ БЕСКИДСЬКОГО ТУНЕЛЮ

Мета. В статті необхідно проаналізувати можливість розробки технології проведення буровибухових робіт та підвищення її ефективності при будівництві Бескидського тунелю в складних інженерно-геологічних умовах. Методика. Автори виконали аналіз технічного рівня гірських і будівельних робіт, нової техніки, обладнання та виробництва. Використовувалось запропоноване забезпечення системою безпеки тунелю, який експлуатується (враховуючи, що відстань до нього 20 м від найближчого заряду в споруджуваному тунелі). Для цього була запропонована система комбінованого вибуху шпурових зарядів короткоуповільненим і уповільненим способами, Враховано, що загальна маса зарядів у заходці була розділена на три групи, в яких перша і друга групи підриваються короткоуповільнено, з інтервалами уповільнення 20…200 мс та 200…400 мс відповідно, і третя – уповільнено, з інтервалами 500…10000 мс. Застосування цієї системи істотно знизило сейсмічну дію масового вибуху зарядів при проходці двоколійного залізничного тунелю великого поперечного перетину. Результати. В статті представлена розроблена технологічна модель, що описує залежність техніки від інженерних та геологічних умов. Була розроблена методологія проведення буровибухових робіт при будівництві калоти і штроси, а також техніка визначення та улаштування інтервалів короткоуповільненого і уповільненого підривання шпурових зарядів вибухових речовин. Представлена максимально допустима концентрація газів і парів при вибуху. Розрахунки показали, що максимальний рівень забруднення газами робочої зони в Бескидському тунелі досягається при вибухових процесах. Відповідно до цього, при вентиляції тунелю, коли проходка виконується по незалежним системам із механічною вентиляцією шляхом дуття, використовують шахтні вентилятори спеціалізованих гірських підприємств. Наукова новизна. Розроблені сейсмобезпечні зарядні маси базуються на добре відомому положенні про антисейсмічне підривання. Практична значимість. Авторами запропонована та обґрунтована ефективна технологія проведення буровибухових робіт (із розділенням поперечного перерізу тунелю на калоту і штросу) при прокладанні високогірного Бескидського тунелю. Представлені результати технологічних експериментів.

Ключові слова: буровибухові роботи; технологія проходки високогірного тунелю; залізничний тунель; вибухова сейсміка; короткоуповільнені та уповільнені заряди

В. Д. ПЕТРЕНКО1*, А. Л. ТЮТЬКИН2*, С. T. ПРОСКУРНЯ3*

1*Каф. «Мосты и тоннели», Днепропетровский национальный университет железнодорожного транспорта имени
академика В. Лазаряна, ул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 373 15 53, эл. почта 1937@gmail.com, ORCID 0000-0002-5902-6155
2*Каф. «Мосты и тоннели», Днепропетровский национальный университет железнодорожного транспорта имени
академика В. Лазаряна, ул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 373 15 53, эл. почта tutkin@mail.ru, ORCID 0000-0003-4921-4758
3*Гос. предприятие «Западдорвзрывпром», ул. Гаевая, 47, Тернополь, 46006, эл. почта zvubyxprom@ukr.com,
ORCID0000-0004-4811-4325

ОСОБЕННОСТИ КОМПЛЕКСА БУРОВЗРЫВНЫХ

РАБОТ ПРИ СТРОИТЕЛЬСТВЕ БЕСКИДСКОГО

ТОННЕЛЯ

Цель. В статье необходимо проанализировать возможность разработки технологии и повышения ее эффективности при строительстве Бескидского тоннеля в сложных инженерно-геологических условиях. Методика. Авторы выполнили анализ технического уровня горных и строительных работ, новой техники, оборудования и производства. Использовалось предлагаемое обеспечение системой безопасности тоннеля, который эксплуатируется (учитывая, что расстояние до него 20 м от ближайшего заряда в строящемся тоннеле). Для этого была предложена система комбинированного взрыва зарядов короткозамедленным и замедленным способами, Учтено, что общая масса зарядов в заходке была разделена на три группы, в которых первая и вторая группы подрываются короткозамедленного, с интервалами замедления 20…200 мс и 200…400 мс соответственно, и третья замедленно, с интервалами 500…10000 мс. Применение этой системы существенно снизило сейсмическое воздействие массового взрыва зарядов при проходке двухпутного железнодорожного тоннеля большого поперечного сечения. Результаты. В статье представлена разработанная технологическая модель, описывающая зависимость техники от инженерных и геологических условий. Разработана методология проведения буровых и взрывных работ при строительстве каллоты и штроссы тоннеля, а также техника определения расстановки и интервалов короткозамедленного и замедленного взрывания шпуровых зарядов взрывных веществ. Представлена максимально допустимая концентрация газов и паров при взрыве. Расчеты показали, что максимальный уровень загрязнения газами рабочей зоны в Бескидском тоннеле достигается при взрывных процессах. Соответственно этому, вентиляция тоннеля, когда проходка выполняется по независимым системам с механической вентиляцией путем продувки, выполняется с использованием шахтных вентиляторов специализированных горных предприятий. Научная новизна. Разработанные сейсмобезопасные зарядные массы основаны на хорошо известном положении об антисейсмическом взрывании. Практическая значимость. Авторами предложена и обоснована эффективная технология внедрения в практику буровзрывных работ (с разделением поперечного сечения тоннеля на калотту и штроссу) при прокладывании высокогорного Бескидского тоннеля. Представлены результаты технологических экспериментов.

Ключевые слова: буровзрывные работы; технология проходки высокогорного тоннеля; железнодорожный тоннель; взрывная сейсмика; короткозамедленные и замедленные заряды

REFERENCES

  1. Artemov V.A., Paramonov G.P., Kholodilov A.N. Metodicheskiye osnovy otsenki seysmicheskogo deystviya massovykh vzryvov po rezultatam analiza seysmovzryvnykh prodolnykh i poverkhnostnykh voln [Methodical foundations of seismic action estimation of mass explosions upon the analysis results of seismic explosion longitudinal and surface waves]. Vzryvnoye delo – Blasting Work, 2012, no. 108-65, pp. 287-295.

  2. Kutuzov B.N. Bezopastnost burovzryvnykh rabot v promyshlennosti [Drilling-and-blasting safety in industry]. Moscow, Nedra Publ., 1992. 544 p.

  3. V Shveytsarii otkryt samyy dlinnyy v mire zheleznodorozhnyy tonnel: 57 km (The world's longest railway tunnel has been opened in Switzerland: 57 km.). Available at: https://geektimes.ru/post/276720/ (Accessed 20 September 2016).

  4. DSTU 4704: 2008. Provedennia promyslovykh vybukhiv. Normy seismichnoi bezpeky [State Standard 4704: 2008. Conducting of industrial explosions. The norms of seismic security]. Kyiv, Derzhspozhyvstandart Ukrainy Publ., 2009. 11 p.

  5. Kutuzov B.N. Razrusheniye gornykh porod vzryvom [Destruction of rocks by explosion]. Moscow, MGI Publ., 1992. 516 p.

  6. Petrenko V.D., Huzchenko V.T., Kulazhenko O.M. Analiz avariinykh sytuatsii v tuneliakh, shcho sporudzhuiutsia vybukhovym sposobom [Analysis of accidents in tunnels, constructed by an explosive way]. Tezy 76 Mizhnarodnoi naukovo-tekhnichnoi konferentsii «Problemy ta perspektyvy rozvytku zaliznychnoho transportu» [Proc. of 76th Sci. and Technical Conference «Problems and prospects of railway transport development»]. Dnipropetrovsk, 2016, pp. 184-185.

  7. Petrenko V.D., Tiutkin O.L., Proskurnia S.T. Znyzhennia seismichnoi dii pry pidryvanni korotkoupovilnenykh ta upovilnenykh zariadiv [Reducing seismic action at blasting of short delayed and delayed charges]. Tezy 76 Mizhnarodnoi naukovo-tekhnichnoi konferentsii «Problemy ta perspektyvy rozvytku zaliznychnoho transportu» [Proc. of 76th Sci. and Technical Conference «Problems and prospects of railway transport development»]. Dnipropetrovsk, 2016, pp. 192-194.

  8. Petrenko V.D., Hernich M.V., Barashkin V.V. Rozrobka kompleksu burovybukhovykh robit pry prokhodtsi Beskidskoho tuneliu [Development of drilling and blasting works while driving the Beskydskiy tunnel]. Tezy 76 Mizhnarodnoi naukovo-praktychnoi konferentsii «Problemy ta perspektyvy rozvytku zaliznychnoho transportu» [Proc. of 75th Sci. and Practical Conference «Problems and prospects of railway transport development»]. Dnipropetrovsk, 2015, pp. 286-287.

  9. Polyankin G.N. Burovzryvnyye raboty v tonnelestroyenii [Drilling and blasting works in tunnel construction.]. Moscow, GOU «Uchebno-metodicheskiy tsentr po obrazovaniyu na zheleznodorozhnom transporte» Publ., 2007. 375 p.

  10. Soboliev V.V., Chernai A.V., Chebenko V.M., Skobenko O.V. Sposoby initsiiuvannia zariadiv vybukhovykh rechovyn [Methods for initiating explosive charges]. Dnipropetrovskk, LizunovPres Publ., 2013. 88 p.

  11. Kutuzov B.N., Skorobogatov V.M., Yerofeyev I.Ye. Spravochnik vzryvnika [Handbook of the shot-firer]. Moscow, Nedra Publ., 1988. 511 p.

  12. Fomichev V.I. Ventilyatsiya tonneley i podzemnykh sooruzheniy [Ventilation of tunnels and underground structures]. Leningrad, Stroyizdat Publ., 1991. 200 p.

  13. Esterov Ya.Kh., Brodov Ye.Yu., Ivanayev M.I. Burovzryvnyye raboty na transportnom stroitelstve [Drilling-and-blasting works on the transport construction]. Moscow, Transport Publ., 1983. 328 p.

  14. Boidy E., Bouvard A., Pellet F. Rock analysis of time-dependent behavior of a test gallery in claystone. Tunneling and Underground Space Technology, 2002, vol. 17, issue 4, pp. 415-424. doi: 10.1016/s0886-7798(02)00066-4.

  15. Erion P., Algest A. Construction Time Anal-ysis For Different Steps In Drill – And – Blast Method Of Hydro Power Tunnel Excavation. Journal of Engineering Research and Applications, 2015, vol. 5, issue 1 (Part 1), pp. 95-101.

  16. Patnik K.K., Nirsen B. Uncertainty analysis of tunnel squeezing for two tunnel cases from Nepal Himalaya. International Journal of Rock Mechanics and Mining Sciences, 2007, vol. 44, issue 1, pp. 67-76. doi: 10.1016/j.ijrmms.2006.04.013.


Prof. M. I. Netesa, Dr. Sc. (Tech.) (Ukraine); Prof. E. I. Efremov, Dr. Sc. (Tech.) (Ukraine) recommended this article to be published


Received: March 22, 2016

Accepted: July 20, 2016

doi © V. D. Petrenko, O. L. Tiutkin, S. T. Proskurnia, 2016