ISSN 2307–3489 (Print), ІSSN 2307–6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського
національного університету залізничного транспорту, 201
6, 3 (63)



транспортне будівництво

UDC 514.181.2

A. D. MALYI1, T. V. ULCHENKO 2, A. S. SHCHERBAK3*, YU. YA. POPUDNIAK4,
T. V. STAROSOLSKAYA
5

1Dep. «Grafics», Dnipropetrovsk National University of Railway Transport
named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk,
Ukraine, 49010, tel. +38 (056) 713 56 49, e-mail malyjanatolij@gmail.com,
ORCID 0000-0002-2710-7532
2Dep. «Grafics», Dnipropetrovsk National University of Railway Transport
named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk,
Ukraine, 49010, tel.+38 (067) 724 47 22, e-mail ulchenkotv@ya.ru,
ORCID 0000-0003-2354-7765
3*Dep. «Grafics», Dnipropetrovsk National University of Railway Transport
named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk,
Ukraine, 49010, tel. +38 (067) 586 45 74, e-mail pro-f@ukr.net,
ORCID 0000-0003-1340-0284
4Dep. «Grafics», Dnipropetrovsk National University of Railway
Transport named after Academician V. Lazaryan,
Lazaryan St., 2, Dnipropetrovsk, Ukraine, 49010, tel. +38 (067) 774 17 47,
e-mail 19brit18@ukr.net, ORCID 0000-0002-1383-9863
5Dep. «Grafics», Dnipropetrovsk National University of Railway Transport
named after Academician V. Lazaryan, Lazaryan St., 2, Dnipropetrovsk,
Ukraine, 49010, tel.+38 (066) 791 35 94,e-mail simatn@rambler.ru,
ORCID 0000-0002-3851-9612

one-to-one NONLINEAR TRANSFORMATION

OF THE SPACE WITH IDENTITY PLANE

Purpose. Study of geometric transformations. We will consider the so-called point transformations of space. Methodology. The most important are one-to-one transformations. They allow exploring and studying the properties of the transformed object using the properties of the original object (line, surface and figure) and the properties of the transformation. Cremona transformations occupy a special place in the set of one-to-one nonlinear transformations. Construction of one-parameter (stratifiable) transformations is carried out as one-parameter set of plane transformations, both linear and non-linear ones. The plane, in which the specific transformation is prescribed, moves in space by a certain law forming a one-parameter set of planes. The set of such plane transformations makes up the space transformation. Findings. The designed graphics algorithms and the established transformation equations allow building the visual images of transformed surfaces and conducting their research by analytical geometry methods. Originality. By completing elementary algebraic transformations of this equation, we obtain the cissoids equation. If the plane is continuously moved parallel to itself, it results in occurrence of surface, whose carcass will be the set of cissoids and the set of front-projecting lines. Practical value. The considered set of stratifiable algebraic transformations gives an effective means for exploring new curves and surfaces obtained by transforming the known algebraic lines and surfaces. These graphic algorithms allow graphically depicting the transformed lines and surfaces. The considered procedure of drawing up analytical formulas of specific transformations allows us to study the transformed surfaces and lines using the methods of analytic geometry. The above transformations can be of arbitrary high order, which is especially important during the design of complex technical surfaces such as aircraft components, parts of water and gas turbines, supports of the structures subject to strong flow of liquid, etc. Space modelling issues, including the building of graphic plane models of space, are relevant both in theoretical terms and in terms of application of the non-linear surfaces investigated on their basis for constructing the technical forms of parts and aggregates of construction machine movable elements, the middle surfaces of shells, the surfaces of turbulent blade, etc.

Keywords: space modelling; quasi-linear model; space transformation; non-linear surface; graphic design; axiomatic design

Extremely important and characteristic ability of our mind is the process which consists in the fact that we relate things to things.

R.Y. Dedekind



Introduction

The idea of relating two objects provides a powerful tool for learning new objects and their properties, as soon as the rules are set – the law of correspondence between these two objects. Regarding the geometry this law is determined by specifying a definite geometric transformation that transforms one object into another.

Geometric transformations are very diverse. We consider the so-called point transformations of space. In this case, each point in space is assigned with another definite point in the same space, and vice versa. This transformation is called one-to-one.

Analytically the point transformation is determined by formulas.

where: – coordinates of the initial point of the pre-image, and coordinates of the transformed point-image. Functions can be linear or nonlinear. In the first case, the transformation will be one-to-one, in the second case, as a rule, multi-value.

Methodology

The most important, in our view, are one-to-one transformations. They allow exploring and studying the properties of the transformed object using the properties of the original object (line, surface, figure) and the properties of the transformation.

Cremona transformations occupy a special place in the set of one-to-one nonlinear transformations; they are named after L.Cremona, who presented a coherent theory of plane non-linear transformations. The fundamental theorem of Cremona plane transformations about the ability to factorize any transformation into quadratic product was proven in the late XIX century. An attempt to prove a similar theorem for Cremona space transformations have been to date unsuccessful. In this regard, we study only some groups of transformations and their particular types. Without going deeply into the theory of Cremona transformations we refer the interested reader to the sources [6], [11], [12].

At present, much attention is paid to the study and construction of the so-called stratifiable transformations. [2], [4], [5], [13]. Construction of one-parameter (stratifiable) transformations is carried out as one-parameter set of plane transformations, both linear and non-linear ones. The plane, in which the specific transformation is prescribed, moves in space by a certain law forming a one-parameter set of planes. The set of such plane transformations makes up the space transformation.

The problem of studying such transformations is relevant both in theoretical terms and in terms of application for constructing the technical forms of parts and aggregates, construction machines running in the flow of liquid or gas (bridge supports, the surface of the turbulent blades of water and gas turbines, surfaces of shells) etc.

The purpose of this work is to design and study the space transformations on the basis of plane transformations that transform straight lines into algebraic curves of any order with multiple singular point and vice versa.

Before proceeding to the design of space transformations we give some information from the theory of algebraic curves [1], [10].

1. Plane algebraic line is a line defined by an algebraic function of the coordinates of its points in the form of:

(1)

Another way to define the curve is a parametric representation for which its current coordinates are set individually as a function of some parameter:

(2)

Excluding the parameter t from the equations (2), we obtain the equation of the same curve in the form (1) and vice versa. From equations (1) we can obtain the parametric representation of curve.

2. The highest degree of the polynomial is called the curve order (1). The curve order is determined by the number of curve intersection points with an arbitrary line.

3. The algebraic curve of -th order, is generally determined by points.

4. Two algebraic curves and of the order and meet at the points respectively.

5. The multiple point (irregularity) of curve is called the point, where several curve branches meet: forming double, triple, etc. points according to the order of the curve. Indecomposable curve of order cannot have points of multiplicity higher and more than of double points.

An algebraic curve may not have multiple points at all, or have less than the specified limits.

Curve genus or genre is the number p that is the difference between the largest number of double points, which may belong to the curve of this order, and their actual number on a given curve. This definition is equally valid if the curve has the points of higher multiplicity, providing that is for of double points. If the curve is of zero genre (i.e., it has the maximum possible number of double points), it has an important property: the coordinates of its points can be expressed as rational functions of some parameter.

These curves are called unicursal. Every curve having a point of the highest possible multiplicity is a unicursal curve. Any line passing through this point intersects the curve only in one more point. Consequently, between the points of this curve and any line we can establish one-to-one correspondence with central projection, if the point of multiplicity is taken as the projection centre.

6. If the multiple point is taken as the origin of coordinates, then the curve equation can be written in the following form

, (3)

where and – homogeneous polynomials in relation to and to and power respectively.

Let us now construct a stratifiable space transformation generated by the curves of the type (3). In the space rectangular coordinate system (Fig. 1) we plot the curve in the frontal plane . In this system, the curve will have the equation

(4)

Let us plot – the multiple point on the Y-axis at the point , and through the point of its intersection with the axis draw the horizontal projecting line .

Any line , passing through the origin of coordinates will intersect the curve at a single point (- unicursal curve), and the straight at the point . Thus, all the points of the curve can be projected at the point of the line and vice versa, i.e. one-to-one transformation is recognized. In this transformation the straight line will correspond to the curve s, and vice versa. The curve will correspond to the straight line t.

The equation of the line :

(5)

where – slope of the straight line.

Solving the combination of equations (4) and (5) we obtain the coordinates of the point .

These coordinates will correspond to the coordinates of the point.

Since the coordinate of the point on the line t equals the coordinate of the point on the curve, then the first of them can be determined as the coordinate of the intersection point of the curve with the axis. It has to be done in each case of the transformation, having the defined curve.

For example, the representative of the set of curves (see Fig.1) is Maclaurin trisector, third-order curve with a double point -fold :

.

To determine the point of intersection of this curve with the axis we suppose, and then we have:
coordinate of the point of intersection with its axis.

Thus, in each particular case we can determine the transformation formulas in the plane .

Moving the straight line together with the point of the curve along the axis we obtain a set of horizontally projecting straight lines and the corresponding bundle of curves. Moving the plane with the transformation set on it, parallel to itself so that the multiplicity point of the curve would move along the axis , we obtain a space transformation, in which of the projecting lines will match the of the curves .

The set of projecting straight lines and curves are perspective regarding the horizontal projection plane, so this plane in the transformation remains fixed and standard.

Findings

In each of the planes there is the same plane transformation, that is why the space transformation is stratifiable, and the coordinates of the corresponding points remain unchanged.

Any curve when moving circumscribes the cylinder with a cross-section. This cylinder within the space transformation corresponds to the profile plane.

Fig. 1

Let us construct, first geometrically, a particular form of space transformation. The circumference will act as a unicursal curve. In the space rectangular coordinate system (Fig. 2) we define an arbitrary point . The coordinate planes and are taken as the horizontal and frontal planes of the projections, respectively. Let us plot the frontal plane through the point .

Fig. 2

Fig. 3

In this plane, on the segment , as on diameter, we draw a circumference . It is tangent to the lines and . We plot the half ray through the point . It crosses the circumference at the point . In other words, we have built a central projection of the point A from the centre to the circumference . Thus, one-to-one transformation between the points and the circumference was found. Each point of the straight line corresponds on the circumference a single point and vice versa. The point corresponds to the infinite point . The whole circumference corresponds to the straight line . Each frontal plane has a similar correspondence, and their set makes a space point transformation in which the circumferences form the cylinder; the projecting straight lines appear on the normal cross-section of the cylinder . Frontal projecting lines are transformed into the cylinder elements.

The algorithm for building the corresponding points on the complex drawing:

1. Produce the frontal plane through the set point (Fig. 3);

2. Draw a circumference at x coordinates of this point, as on diameter;

3. Through the point belonging to , draw the straight line in the plane ;

4. The line passes through the point and crosses the circumference at the point ;

5. Points and correspond to each other in this transformation [8].

Now we form the equation of this transformation.

The circle is written as the equation

We transfer the origin of coordinates to the point .

Let us transform this expression

(1)

Equation (1) is the equation of the circle relative to the point as the origin of coordinates:

The equation of the line relative to the same origin

(2)

We solve together the equations (1), (2) and get

but since (Fig.2), we have: . This formula makes it possible to determine the coordinate of the transformed point by the coordinates of the initial point.

Substituting into the equation (1) instead of the variable its value from (2) and producing a transformation similar to the above, we obtain:

Let us write the formulas of direct space transformation:

(3)

The same procedure is for the formulas of inversion transformation:

(4)

Originality and practical value

The transformation formulas (3) and (4) show that the third order (cubic) transformation transforms the profile plane into the frontal projecting cylinder. This is easily seen by substituting x in its equation with its expression from the first transformation formula (4):

.

The set of front-projecting lines of this plane is transformed into the set of cylinder elements, and the set of horizontally-projecting straight lines – into the set of cylinder circumferences.

The horizontal plane is transformed into the surface of the third order. The complex figure (Fig. 4) shows a horizontal plane . Let us consider the transformation in the plane . We take an arbitrary point on the plane in the plane . And according to the known algorithm we graphically build its image . To do this, we draw through the origin of coordinates the line . Front projection will pass through the origin . On the segment , as on diameter, we build a circumference . The point of intersection of the circumference with the line will correspond to the point in the transformation. The set of points will make up the curve of the third order – cissoid of Diocles.

Using the transformation formulas (4) we write its equation as an image of the straight line. In the equation of the line we substitute the coordinate with its value from the third formula (4):

After completing elementary algebraic transformations of this equation, we obtain the following cissoid equation:

This equation shows that the cissoid is an algebraic curve of the 3rd order. It is symmetrically relative to the axis, and the line is its asymptote, and the origin of coordinates is a cusp of the 1st kind [3].

If the plane is continuously moved parallel to itself, it results in occurrence of the surface, whose carcass is the set of cissoids and the set of front-projecting straight lines (Figure 5) [9], [7].

Fig. 4

Fig. 5

Conclusions

1. The considered set of stratifible algebraic transformations gives an effective means for exploring new curves and surfaces obtained by transforming the known algebraic lines and surfaces.

2. These graphic algorithms allow graphically depicting the transformed lines and surfaces.

3. The considered procedure of drawing up analytical formulas of specific transformations allows us to study the transformed surfaces and lines using the methods of analytic geometry.

4. The above transformations can be of arbitrary high order, which is especially important during the design of complex technical surfaces such as aircraft components, parts of water and gas turbines, supports of the structures subject to strong flow of liquid, etc.

LIST OF REFERENCE LINKS

  1. Бюшгенс, С. С. Дифференциальная геометрия / С. С. Бюшгенс. – Москва ; Ленинград : Гос. изд-во технико-теоретич. лит-ры, 1940. – 300 с.

  2. Джапаридзе, И. С. Преобразование пространства на базе однопараметрических семейств плоскостных преобразований / И. С. Джапаридзе, Г. С. Саакян // Начертательная геометрия : науч. тр. / Грузин. политехн. ин-т. – Тбилиси, 1974. – № 6. – С. 12–15.

  3. Ермаков, А. В. Расслаиваемые кубические инволюции пространства с инвариантной квадрикой / А. В. Ермаков // Взаимно однозначные соответствия в проектировании машин лесной промышленности : науч. тр. / Моск. лесотехн. ин-т. – Москва, 1973. – № 54. – С. 51–57.

  4. Иванов, Г. С. К вопросу моделирования алгебраических поверхностей центральными кремоновыми преобразованиями / Г. С. Иванов // Взаимно однозначные соответствия в проектировании машин лесной промышленности : науч. тр. / Моск. лесотехн. ин-т. – Москва, 1973. – № 54. – С. 80–92.

  5. Иванов, Г. С. Кремоновы преобразования плоскости и пространства / Г. С. Иванов // Кремоновы преобразования и их приложения : науч. тр. / Моск. лесотехн. ин-т. – Москва, 1971. – № 39. – С. 85–119.

  6. Квазилинейные графические модели пространства / А. Д. Малый, Ю. Я. Попудняк, Т. В. Ульченко, Т. В. Старосольская // Мости та тунелi: теорія, дослідження, практика. – 2014. – Вип. 5. – С. 51–56.

  7. Плоский, В. А. Разработка инвариантной подсистемы геометрического моделирования объектов сложной формы / В. А. Плоский, В. М. Гурак // Автометрия. – 1990. – № 4. – С. 47–50.

  8. Плоский, В. О. Апроксимація алгоритмів геометричного моделювання в задачах перезадання поверхонь / В. О. Плоский // Інженерна геодезія. – 1998. – № 40. – с. 161–164.

  9. Попудняк, Ю. Я. Наближені розгортки сфери / Ю. Я. Попудняк, Т. В. Ульченко, А. С. Щербак // Вісн. Дніпропетр. нац. ун-ту залізн. трансп. ім. акад. В. Лазаряна. – Дніпропетровськ, 2011. – Вип. 38. − С. 162–164.

  10. Савелов, А. А. Плоские кривые : справ. рук-во / А. А. Савелов. – Москва : Гос. изд-во физико-матем. лит-ры, 1960. – 293 с.

  11. Hadson, H. Р. Cremona Transformations in Рlane and Space. Cambridge : Cambridge University Press, 1927. 454 p.

  12. Hassanzadeh, F. F. An Axiomatic Approach to Constructing Distances for Rank Comparison and Aggregation / F. F. Hassanzadeh, O. Milenkovic // IEEE Transactions on Information Theory. – 2014. – Vol. 60. – Iss. 10. – P. 6417–6439. doi: 10.1109/TIT.2014.2345760.

  13. Xu, Х. A spatial autoregressive model with
    a nonlinear transformation of the dependent variable /
    Х. Xu, L. Lee // J. of Econometrics. 2015. Vol. 186. Iss. 1. – P. 1–18. doi:10.1016/j. jeconom. 2014.12.005.

А. Д. Малий1, Т. В. УЛьченко2, А. С. Щербак3*, ю. я. попудняк4,
Т. В. старосольська5

1Каф. «Графіка», Дніпропетровський національний університет
залізничного транспорту ім. В. Лазаряна, вул. Лазаряна, 2,
Дніпропетровськ, Україна, 49010, тел. +38 (056) 713 56 49,
ел. пошта malyjanatolij@gmail.com,
ORCID 0000-0002-2710-7532
2Каф. «Графіка», Дніпропетровський національний університет
залізничного транспорту ім. В. Лазаряна, вул. Лазаряна, 2,
Дніпропетровськ, Україна, 49010, тел. +38 (067) 724 47 22,
ел. пошта ulchenkotv@ya.ru,
ORCID 0000-0003-2354-7765
3*Каф. «Графіка», Дніпропетровський національний університет
залізничного транспорту ім. В. Лазаряна, вул. Лазаряна, 2,
Дніпропетровськ, Україна, 49010, тел. +38 (067) 586 45 74,
ел. пошта pro-f@ukr.net,
ORCID 0000-0003-1340-0284
4Каф. «Графіка», Дніпропетровський національний університет
залізничного транспорту ім. В. Лазаряна, вул. Лазаряна, 2,
Дніпропетровськ, Україна, 49010, тел. +38 (067) 774 17 47,
ел. пошта 19brit18@ukr.net,
ORCID 0000-0002-1383-9863
5Каф. «Графіка», Дніпропетровський національний університет
залізничного транспорту ім. В. Лазаряна, вул. Лазаряна, 2,
Дніпропетровськ, Україна, 49010, тел. +38 (066) 791 35 94,
ел. пошта simatn@rambler.ru,
ORCID 0000-0002-3851-9612

ВзаємНо однозначнІ НЕЛІНІЙНІ

ПЕРЕТВОРЕННЯ ПРОСТОРУ

З тотожною площиною

Мета. Робота спрямована на дослідження геометричних перетворень. Ми будемо розглядати так звані «точкові» перетворення простору. Методика. Найбільш важливим є взаємно однозначні перетворення. Вони дозволяють за властивостями вихідного об'єкта (лінії, поверхні, фігури) і властивостями перетворення досліджувати та вивчати властивості перетвореного об'єкта. У безлічі взаємно однозначних нелінійних перетворень особливе місце займають Кремонови перетворення. Конструювання однопараметричних (розшарованих) перетворень здійснюється як безліч однопараметричних плоских перетворень (лінійних і нелінійних). Площина, в якій задано конкретне перетворення, переміщується в просторі по визначеному закону, утворюючи безліч однопараметричних площин. Сукупність таких плоских перетворень становить просторове перетворення. Результати. Авторами сконструйовані графічні алгоритми і виведені рівняння перетворення, що дозволяють будувати наочні зображення перетворених поверхонь та здійснювати їх дослідження методами аналітичної геометрії. Наукова новизна. Виконавши елементарні алгебраїчні перетворення цього рівняння, отримаємо рівняння цисоїд. Якщо площину безперервно переміщувати паралельно самій собі, то утворюється поверхня, каркасом якої буде безліч цисоїд і безліч фронтально-проекційних прямих. Практична значимість. Розглянута безліч розшарованих алгебраїчних перетворень дає ефективний засіб вивчення нових кривих і поверхонь, одержуваних перетворенням відомих алгебраїчних ліній та поверхонь. Наведені графічні алгоритми дозволяють наочно зобразити перетворені лінії та поверхні. Досліджена методика складання аналітичних формул конкретних перетворень дозволяє вивчати перетворені лінії та поверхні методами аналітичної геометрії. Розглянуті перетворення можуть бути як завгодно високого порядку, що особливо важливо при конструюванні складних технічних поверхонь типу агрегатів літальних апаратів, деталей водяних і газових турбін, опор споруд, що знаходяться в сильному потоці рідини, та ін. Питання моделювання простору, в тому числі побудова графічних площинних моделей простору, актуальні як у теоретичному плані, так і в плані застосування досліджених на їх основі нелінійних поверхонь для конструювання технічних форм деталей та агрегатів робочих органів будівельних машин, серединних поверхонь оболонок, поверхонь турбулентних лопаток та ін.

Ключові слова: моделювання простору; квазілінійні моделі; перетворення простору; нелінійні поверхні; графічна конструкція; аксіоматична конструкція

А. Д. Малый1, Т. В. УЛьченко2, А. С. Щербак3*, ю. я. попудняк4,
Т. В. старосольская5

1Каф. «Графика», Днепропетровский национальный университет
железнодорожного транспорта им. В. Лазаряна, ул. Лазаряна, 2,
Днепропетровск, Украина, 49010, тел. +38 (056) 713 56 49,
эл. почта malyjanatolij@gmail.com,
ORCID 0000-0002-2710-7532
2Каф. «Графика», Днепропетровский национальный университет
железнодорожного транспорта им. В. Лазаряна, ул. Лазаряна, 2,
Днепропетровск, Украина, 49010, тел. +38 (067) 724 47 22,
эл. почта ulchenkotv@ya.ru,
ORCID 0000-0003-2354-7765
3*Каф. «Графика», Днепропетровский национальный университет
железнодорожного транспорта им. В. Лазаряна, ул. Лазаряна, 2,
49010 Днепропетровск, Украина, тел. +38 (067) 586 45 74,
эл. почта pro-f@ukr.net,
ORCID 0000-0003-1340-0284
4Каф. «Графика», Днепропетровский национальный университет
железнодорожного транспорта им. В. Лазаряна, ул. Лазаряна, 2,
Днепропетровск, Украина, 49010, тел. +38 (067) 774 17 47,
эл. почта 19brit18@ukr.net,
ORCID 0000-0002-1383-9863
5Каф. «Графика», Днепропетровский национальный университет
железнодорожного транспорта им. В. Лазаряна, ул. Лазаряна, 2,
Днепропетровск, Украина, 49010, тел. +38 (066) 791 35 94,
эл. почта simatn@rambler.ru,
ORCID 0000-0002-3851-9612

ВЗАИМНО ОДНОЗНАЧНЫЕ НЕЛИНЕЙНЫЕ

ПРЕОБРАЗОВАНИЯ ПРОСТРАНСТВА С

ТОЖДЕСТВЕННОЙ ПЛОСКОСТЬЮ

Цель. Работа направлена на исследование геометрических преобразований. Мы будем рассматривать так называемые «точечные» преобразования пространства. Методика. Наиболее важными являются взаимно однозначные преобразования. Они позволяют по свойствам исходного объекта (линии, поверхности, фигуры) и свойствам преобразования исследовать и изучать свойства преобразованного объекта. Во множестве взаимно однозначных нелинейных преобразований особое место занимают Кремоновы преобразования. Конструирование однопараметрических (расслояемых) преобразований осуществляется как однопараметрическое множество плоских преобразований (линейных и нелинейных). Плоскость, в которой задано конкретное преобразование, перемещается (преобразуется) в пространстве по определенному закону, образуя однопараметрическое множество плоскостей. Совокупность таких плоских преобразований составляет пространственное преобразование. Результаты. Авторами сконструированы графические алгоритмы и выведены уравнения преобразования, позволяющие строить наглядные изображения преобразованных поверхностей и осуществлять их исследование методами аналитической геометрии. Научная новизна. Выполнив элементарные алгебраические преобразования этого уравнения, получим уравнение циссоиды. Если плоскость непрерывно перемещать параллельно самой себе, то образуется поверхность, каркасом которой будет множество циссоид и множество фронтально-проецирующих прямых. Практическая значимость. Рассмотренное множество расслояемых алгебраических преобразований дает эффективное средство изучения новых кривых и поверхностей, получаемых преобразованием известных алгебраических линий и поверхностей. Приведенные графические алгоритмы позволяют наглядно изобразить преобразованные линии и поверхности. Рассмотренная методика составления аналитических формул конкретных преобразований позволяет изучать преобразованные линии и поверхности методами аналитической геометрии. Исследованные преобразования могут быть как угодно высокого порядка, что особенно важно при конструировании сложных технических поверхностей типа агрегатов летательных аппаратов, деталей водяных и газовых турбин, опор сооружений, находящихся в сильном потоке жидкости, и др. Вопросы моделирования пространства, в том числе построение графических плоскостных моделей пространства, актуальны как в теоретическом плане, так и в плане применения исследованных на их основе нелинейных поверхностей для конструирования технических форм деталей и агрегатов рабочих органов строительных машин, срединных поверхностей оболочек, поверхностей турбулентных лопаток и др.

Ключевые слова: моделирование пространства; квазилинейные модели; преобразование пространства; нелинейные поверхности; графическая конструкция; аксиоматическая конструкция

REFERENCES

  1. Byushgens S.S. Differentsialnaya geometriya [Differential geometry]. Moskow; Leningrad, Gosudarstvennoye izdatelstvovo tekhniko-teoreticheskoy literatury Publ., 1940. 300 p.

  2. Dzhaparidze I.S., Saakyan G.S. Preobrazovaniye prostranstva na baze odnoparametricheskikh semeystv ploskostnykh preobrazovaniy [Transformation of the space on the basis of one-parameter families of the plane transformations]. Nachertatelnaya geometriyaDescriptive Geometry, 1974, no. 6, pp. 12-15.

  3. Yermakov A.V. Rasslaivayemyye kubicheskiye involyutsii prostranstva s invariantnoy kvadrikoy [Stratified cubic involutions of the space with invariant quadric]. Vzaimnoodnoznachnyye sootvetstviya v proyektirovanii mashin lesnoy promyshlennosti [One-to-one correspondence in the design of machines for wood industry], 1973, issue 54, pp. 51-57.

  4. Ivanov G.S. K voprosu modelirovaniya algebraicheskikh poverkhnostey tsentralnymi kremonovymi preobrazovaniyami [On the issue of modeling of algebraic surfaces using the central Cremona transformations]. Vzaimnoodnoznachnyye sootvetstviya v proyektirovanii mashin lesnoy promyshlennosti [One-to-one correspondence in the design of machines for wood industry], 1973, issue 54, pp. 80-92.

  5. Ivanov G.S. Kremonovy preobrazovaniya ploskosti i prostranstva [Cremona transformations of the plane and space]. Kremonovy preobrazovaniya i ikh prilozheniya [Cremona transformations and their applications], 1971, issue 39, pp. 85-119.

  6. Malyy A.D., Popudnyak Yu.Ya., Ulchenko T.V., Starosolskaya T.V. Kvazilineynyye graficheskiye modeli prostranstva [Quasi-linear graphical model of space]. Mosty ta tuneli: teoriia, doslidzhennia, praktyka [Bridges and Tunnels: Theory, Research, Practice], 2014, issue 5, pp. 51-56.

  7. Ploskiy V.A., Gurak V.M. Razrabotka invariantnoy podsistemy geometricheskogo modelirovaniya obyektov slozhnoy formy [Development of invariant subsystem for geometric modeling of complex form objects]. Avtometriya – Autometering, 1990, no. 4, pp. 47-50.

  8. Ploskyi V.O. Aproksymatsiia alhorytmiv heometrychnoho modeliuvannia v zadachakh perezadannia poverkhon [Approximation of algorithms for geometric modeling in problems of surfaces resetting]. Inzhenerna heodeziia – Engineering Geodesy, 1998, no. 40, pp. 161-164.

  9. Popudniak Yu.Ya., Ulchenko T.V., Shcherbak A.S. Nablyzheni rozghortky sfery [Reamers of sphere are closed]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transportu imeni akademika V. Lazariana [Bulletin of Dnipropetrovsk National Univesity of Railway Transport named after Academician V. Lazaryan], 2011, issue 38, pp. 162-164.

  10. Savelov A.A. Ploskiye krivyye [Plane curves]. Moskow, Gosudarstvennoye izdatelstvo fiziko-matematicheskoy literatury Publ., 1960, 293 p.

  11. Hadson H.Р. Cremone transformations in plane and space. Cambridge University Press Publ., 1927. 454 p.

  12. Hassanzadeh F.F., Milenkovic O. An Axiomatic Approach to Constructing Distances for Rank Comparison and Aggregation. IEEE Transactions on Information Theory, 2014, vol. 60, issue 10, pp. 6417-6439. doi: 10.1109/TIT.2014.2345760.

  13. Xu Х., Lee L. A spatial autoregressive model with a nonlinear transformation of the dependent variable. Journal of Econometrics, 2015, vol. 186, issue 1, pp. 1-18. doi:10.1016/j. jeconom. 2014.12.005.


Prof. S. S. Tyshchenko, Sc. Tech. (Ukraine); Prof. V. D. Petrenko, Sc. Tech. (Ukraine) recommended this article to be published


Accessed: Feb., 2. 2016

Received: May, 11. 2016

doi 10.15802/stp2016/74768
© A. D. Malyi, T. V. Ulchenko, A. S. Shcherbak, Yu. Ya. Popudniak, 2016