ISSN 2307–3489 (Print), ІSSN 2307–6666 (Online)
Наука
та прогрес транспорту. Вісник
Дніпропетровського
національного університету залізничного
транспорту, 2016,
№
3
(63)
АВТОМАТИЗОВАНІ СИСТЕМИ УПРАВЛІННЯ НА ТРАНСПОРТІ
A. BIAŁOŃ1*, D. ADAMSKI2*, JU. FURMAN3*
1*Instytut
Kolejnictwa, ul. Chłopickiego, 50, Warsaw, Poland,
04-275, e-mail abialon@ikolej.pl,
ORCID
0000-0003-1648-0056
2*Instytut
Kolejnictwa, ul. Chłopickiego, 50, Warsaw, Poland, 04-275, e-mail
dadamski@ikolej.pl,
ORCID
0000-0001-5897-579X
3*Instytut
Kolejnictwa, ul. Chłopickiego, 50, Warsaw, Poland,
04-275, e-mail jfurman@ikolej.pl,
ORCID0000-0002-4160-3372
UNIFIED VERIFICATION METHOD OF
ELECTROMAGNETIC
COMPATIBILITY BETWEEN
ROLLING STOCK
AND TRAIN DETECTION
SYSTEMS
Purpose. Axle counters are more and more often applied in train detection systems. The wheel sensor is a main part of each axle counter system. In parallel, more and more complex railway vehicles, especially traction ones, are a potential source of interferences influencing the operation of these train detection systems. It is the reason to verify the electromagnetic compatibility (EMC) between the signalling equipment, particularly train detection systems and new vehicles in the process of obtaining the permission for their exploitation. The measurement of interfering magnetic fields generated by vehicles is one of tests to be carried out. Methodology. For the simplification and unification purpose of the applied interference test methods the EN 50238 standard and TS 50238-3 technical specification were developed. The specification defines unified testing procedures. However, it is necessary to verify if it may replace different testing methods used in particular European states. It is the goal of the European research project financed from the TEN-T network resources. Findings and originality. This project is part of the larger project of facilitation and speeding up the ERTMS system deployment. One of nine measurement campaigns planned in the frame of this project was conducted in Poland by Railway Research Institute.
Keywords: signaling; interoperability; railway transport
Introduction
One of the basic functions performed by the railway signalling devices is track occupancy detection of the specified part of the railway network. It may be a section of main track, station track, junction or any other separated region which needs continuous occupancy detection in order to provide safe and uninterrupted rolling stock movement. In the past, this function was mostly realized by the various types of track circuits which primary operating principle is based on indicating electrical (galvanic) shunting of each rail with rolling stock axles. Therefore such devices are detecting track occupancy continuously along all track circuit area under condition of preserving proper electrical isolation between rails. In addition as a side effect of above mentioned method diagnostic of rail cracks rail is possible due to the fact that rail continuity is required for track circuits operation. If rail is cracked or broken then automatically track circuit indicates track occupancy permanently. However difficulties in the application of track circuits and need to maintain necessary technical parameters of track and roadbed contributed to the development of alternative methods for track occupancy detection so called axle counters systems.
Axle counters detect passing of a trains between two points of a track via wheel sensors that are installed on each end of a supervised section. Each time train passes over wheel sensor with the first axle counting process starts. The same process takes place in the second counting point and if two counts have the same values the track is indicated as unoccupied and clear for next train. Each counting head consists of two independent wheel sensors therefore each device is able to detect speed and direction of a train. To improve the reliability axle counting systems are usually designed with redundancy that means at least two independent channels are used to generate information regarding track status.
Nowadays
European railways are more often increasing the number of axle
counters systems installations in relation to track circuits
devices. Railway infrastructure managers exchanged a lot of track
circuits for the axle counter systems, especially on the main lines
of fundamental importance for the whole transport system. This is
directly linked with the issue of ensuring the proper safe and
uninterrupted operation of axle counting systems that are resistant
to the interferences generated from the rolling stock. Wheel sensors
must comply with requirements for sensitivity in order to reliably
detect wheel passage. Moreover this parameter has to be reduced at
the same time to avoid undesirable influence of external
interferences which can cause for example erroneous counting of
redundant axis. Wheel sensor is mechanically attached to rail and
its circuit is separated from it. However, the influence of
interfering magnetic fields cannot be avoided, since the sensors
operate on the principle of coupling or damping magnetic field
between the transmitter and receiver of the sensor through the axis
of the vehicle. Wheel sensors operate in frequency bands
characteristic for a different types of axle counters. The current
flowing in the rails with frequency of
a
sensor or external magnetic field at this frequency will strongly
affect the performance of a sensor. Magnetic field vector for
currents in the rails has predictable direction, while the magnetic
field vector has a direction depending on the location of
interference source in relation to the wheel sensor. The impact of
interference will be different for the sensor when there is no
nearby axes and another when the axle will be located in the sensing
area. Therefore interferences due to their origin can be divided
into: currents flowing in the rails (return traction current and
resonance currents in catenary), magnetic fields (fixed and
variable) generated by elements of the rolling stock (eg rail
brakes, eddy current brakes, electric traction motors, converters).
Providing the required reliability of axle counting with usage of
wheel sensors on acceptable susceptibility level determines need of
elaborating electromagnetic field limits generated from a rolling
stock. This issue is called EMC Electromagnetic Compatibility of
railway vehicles with signalling trackside devices in that case axle
counters. There are number of different types of axle counting
systems around the Europe and many more of rolling stock that is
usually prepared and allowed to operate in a wider area of the
rail network, which results in considerable complexity
of the compatibility problem. Determining acceptable levels of
interference for each frequency band of operation of wheel sensor is
a subject of the so-called process of frequency management and it
has been defined in the technical specification TS 50238-3.
Validation of the measurement method according to TS 50238-3. Validation of measurement method regarding permitted magnetic fields levels generated from the rolling stock has been made in the scope of European project WP11. Measurement campaign was performed according TS 50238-3 in following countries: Austria, Belgium, Netherlands, France, Germany, Poland, Switzerland, Great Britain and Italy.
Research was conducted on the basis of pre-agreed programs on selected sections of railroads or special test tracks for all traction supply systems, i.e. For 1.5 kV and 3 kV DC and 15 kV and 25 kV AC. Each measurement campaign included: measurements of magnetic fields generated from rolling stock performed in consistent manner in accordance with the technical specifications TS 50238-3, measurements in accordance with applicable national test procedures of axle counter response in case of magnetic field limit exceedances, post processing of collected data in order to compare interferences levels with existing national limits.
Measurement campaign in Poland. Railway Research Institute was responsible for performing Polish measurement campaign and representation of the final results. In regard to abovementioned issues there was a need to set up test system for measuring magnetic field emissions generated by rolling stock . Railway Research Institute acquired all necessary components and build up complete measurement system that provides testing of both sides of vehicle at the same time. It was made according to the technical specification TS 50238-3 and the measurement is performed in three dimensions by specially designed antennas. The examination involves performing of a several test runs by the tested vehicle over the sensors and recording the levels of generated magnetic fields. In accordance to TS 50238-3 requirements measurement has to be conducted independently in three mutually perpendicular dimensions marked with letters: X, Y, Z. Location of each measurement direction is illustrated on Fig. 1.
In all stages of the Polish campaign measurements were carried out simultaneously using two antennas mounted on the inner side of rails in order to measure maximum level of disturbances generated from the examined rolling stock regardless of any asymmetry in the position of the interference source on the vehicle.
In the first phase of the project all participants elaborated measurement schedules. Polish campaign was planned to take place first on the Test Ring near Żmigród that belongs to Railway Research Institute and after that on a regular railway line with high density of train movement. The purpose of conducting measurements on the railway line in service was to examine as many types of vehicles as it was possible. Through measurements performed on the Test Ring personnel had opportunity to familiarize with new research equipment, test procedures and processing of collected data according to TS 50238-3. Realization of the measurements on the Test Ring also allowed extending the range of examined vehicles. Second stage of Polish campaign was conducted on CMK line which is currently one and only line in Poland that allows trains to travel with a speed up to 200 km/h. Thus that fact there was possibility of performing measurements with a speed which was not possible to achieve on any other line in Poland. As it was mentioned before third stage was carried out on line with high density of railway traffic. Regarding project assumptions it was the most important phase and therefore measurements duration was the longest and number of tested vehicles was the largest. Data acquired during all phases of Polish measurement campaign after digital processing led to some conclusions regarding inferences levels generated from variety of rolling stock on 3 kV railway lines. Accuracy of measuring method and measurement equipment was confirmed on the basis of final results. After examination of the same vehicle within few days of the measurements it was visible that results were very similar to each other every time. Visual presentation of measurement is something like a footprint of particular vehicle and it is a unique like human fingerprints.
Fig. 1. Measurement directions |
Fig.
2. Two measurement antennas mounted |
Exemplary results of magnetic fields strength measurement are presented on Fig. 3, 4 and 5. Every time measurement was taking place it was automatically compared with the limit values set out in technical specifications for each of the directions. Measured data are marked with blue color; red color represents limit values for each of the three directions.
Fig. 3. Exemplary result of measurement in X direction
Fig. 4. Exemplary results of measurement in Y direction
Fig. 5 . Exemplary result of measurement in X direction
Conclusions
Measurement method and used equipment provided repeatability of results on acceptable level what ensured reliability under condition of regular calibration of whole system according to procedures. Further conclusion concerning tests was that it is possible to distinguish some groups of vehicles regarding results types. First of all electric traction vehicles equipped with electro-mechanical traction converters generated significantly less disturbances than the newer generation vehicles equipped with electronic converters. Interference generated by diesel locomotives, which were even smaller and mostly did not exceed disturbance of a background noise. Moreover it was noticed that the higher values of magnetic fields were observed in Y and Z directions. Experience gained so far also indicates that the magnetic fields strength exceedances emitted by rolling stock generally concern the measurement plane Y. This is due to the mutual influence of magnetic fields generated from rail currents and from rolling stock in this direction. Results gathered during campaign in all countries that participated in the project may contribute to elaboration of uniform European measurement method of disturbances from rolling stock. This step will give opportunity to eliminate all sources of exceeded interferences on the stage of approval tests. Facing the general trend of introducing axle counters on new railway lines and replacing track circuits with them on modernized ones, the issue of testing the impact of magnetic fields on axle counters is essential and it should be carried out for the entire range of rolling stock that is operating on a rail network. Presented method of measuring magnetic field strength meets the requirements of the technical specifications of theTS 50238-3 and allows clear determination of whether the tested vehicle may affect the operation of the wheel sensors and consequently the axle counters. Such action would eliminate rolling stock that may affect the operation of axle counters, and thus will reduce disturbances in train movements allowing easier traffic management.
LIST OF REFERENCE LINKS
Про електромагнітну сумісність електри-фікованих залізничних ліній постійного струму / І. В. Анохов, М. П. Бадьор, В. І. Гаврилюк, В. Г. Сиченко // Залізн. трансп. України. – 2000. – № 2. – С. 10–12.
Сиченко, В. Г. До питання розробки активного фільтра тягової підстанції постійного струму / В. Г. Сиченко, В. А. Зубенко, М. П. Бадьор // Залізн. трансп. України. – 2006. – № 5. – С. 39–41.
Сиченко, В. Г. Дослідження показників якості електричної енергії на тягових підстанціях постійного струму / В. Г. Сиченко // Гірн. електромеханіка та автоматика : наук.-техн. зб. / Нац. гірн. ун-т. – Дніпропетровськ, 2008. – Вип. 81. – С. 53–60.
Сиченко,
В. Г. Оцінка
ефективності функці-онування
пасивних згладжуючих
фільтрів тягових
підстанцій постійного
струму /
В.
Г. Сиченко,
В. А.
Зубенко // Вісн. Дніпро-петр.
нац. ун-ту залізн. трансп. ім. акад. В.
Лазаряна. – Дніпропетровськ,
2008. – Вип. 25. – С. 63–69.
Białoń, A. Badanie kompatybilności elektromag-netycznej taboru z urządzeniami wykrywania pociągu z uwzględnieniem normy EN 50238 / A. Białoń, D. Adamski, P. Pajka // Problemy Kolejnictwa. – 2011. – Z. 152. – P. 43–49.
Cholewicki, T. Elektryczne linie długie i układy niejednorodne / T. Cholewicki. – Warszawa : PWN, 1978.
CLC/TS 50238-3:2013. Railway applications: compatibility between rolling stock and train detection systems. Pt. 3 : Compatibility with axle counters. – 2013. – 16 р.
Mariscotti, A. Determination of the Electrical Parameters of Railway Traction Lines: Calculation, Measurement and Reference Data / A. Mariscotti, P. Pozzobon // IEEE Trans. on Power Delivery. – 2004. – Vol. 19. – Iss. 4. – P. 1538–1546. doi: 10.1109/TPWRD.2004.835285.
Mariscotti, A. Synthesis of line impedance expressions for railway traction systems / A. Mariscotti, P. Pozzobon // IEEE Trans. on Vehicular Technology. – 2003. – Vol. 52. – Iss. 2. – P. 420–430. doi: 10.1109/TVT.2003.808750.
Model układu zasilania na torze doświadczalnym w Żmigrodzie / A. Białoń, A. Kazimierczak, W. Zając, G. Skarpetowski // Drives and Supply Systems for Modern Electric Traction in Integrated XXIst Century Europe : 4th Int. Conf. (23.09–25.09.1999). – Warszawa, 1999.
Mutual design overhead transmission lines and railroad facilities : Report EPRI, EL-646 / Electric Power Research Institute. – Paolo Alto, CA, 1989. – 166 р.
Określenie dopuszczalnych poziomów i parametrów zakłóceń dla urządzeń sterowania ruchem kolejowym : Praca IK 4430/10. – Warszawa, 2011. – 248 р.
Pawlik, M. Control command systems impact on the railway operational safety / M. Pawlik // Наука та прогрес транспорту. – 2015. – № 2 (56). – С. 58–64. doi: 10.15802-/stp2015/42160.
Szeląg, A. Zagadnienia analizy i projektowania systemu trakcji elektrycznej prądu stałego z zastosowaniem technik modelowania i symulacji / A. Szelag // Prace Naukowe PW. Seria: Elektryka. – 2002. – Z. 123. – P. 178.
Untersuchung der Beeinflussung von Glaisstromkreisen. Frage A 122. Bericht nr 9. Utecht, 1973. – 184 p.
Żurkowski, A. Railway operation and transport. Control command and signalling / A. Żurkowski, M. Pawlik // Ruch i przewozy kolejowe. Sterowanie ruchem. – Warszawa, 2010. – Р. 160.
А. бялонь1*, Д. Адамскі2*, Ю. Фурман3*
1*Залізничний
інститут, вул.
Хлопіцького,
50, Варшава, Польща,
04-275, ел.
пошта abialon@ikolej.pl,
ORCID
0000-0003-1648-0056
2*Залізничний
інститут, вул.
Хлопіцького,
50, Варшава, Польща,
04-275, ел.
пошта
dadamski@ikolej.pl,
ORCID
0000-0001-5897-579X
3*Залізничний
інститут, вул.
Хлопіцького,
50, Варшава, Польща,
04-275, ел.
пошта
jfurman@ikolej.pl,
ORCID
0000-0002-4160-3372
УНІФІКОВАНИЙ МЕТОД
ПЕРЕВІРКИ
ЕЛЕКТРОМАГНІТНОЇ
СУМІСНОСТІ
МІЖ РУХОМИМ
СКЛАДОМ ТА
СИСТЕМОЮ
ВИЯВЛЕННЯ ПОЇЗДА
Мета. Лічильники осей все частіше і частіше застосовуються в системах виявлення поїзда. Датчик коліс є основною частиною кожної системи підрахунку осей. Паралельно з цим, все більш і більш складні залізничні транспортні засоби, особливо тягові, є потенційним джерелом перешкод, що впливають на роботу цих систем виявлення поїзда. Це є причиною для перевірки електромагнітної сумісності (ЕМС) між обладнанням зв’язку, зокрема, системами виявлення поїздів, і новими транспортними засобами у процесі отримання дозволу на їх експлуатацію. Вимірювання заважаючих магнітних полів, що генеруються транспортним засобом, повинне стати одним із випробувань. Методика. З метою спрощення та уніфікації застосовуваних методів випробувань були розроблені стандарт EN 50238 та технічна специфікація TS 50238-3. Специфікація визначає уніфіковані методи випробувань. Проте, необхідно перевірити, чи можуть вони замінити різні методи випробувань, що використовуються в інших країнах Європейського союзу. Це мета європейського дослідницького проекту, фінансованого з ресурсів мережі TEN-T. Результати та наукова новизна. Даний проект є частиною більшого проекту по спрощенню та прискоренню розгортання системи ERTMS. Одне із дев’яти експериментальних вимірювань, запланованих в рамках даного проекту, було проведено в Польщі Інститутом залізничного транспорту.
Ключові слова: сигналізація; сумісність; залізничний транспорт
А. бялонь1*, Д. АдамскИ2*, Ю. Фурман3*
1*Железнодорожный
институт, ул. Хлопицкого,
50, Варшава, Польша, 04-275,
эл. почта
abialon@ikolej.pl,
ORCID
0000-0003-1648-0056
2*Железнодорожный
институт, ул. Хлопицкого,
50, Варшава, Польша, 04-275,
эл. почта
dadamski@ikolej.pl,
ORCID
0000-0001-5897-579X
3*Железнодорожный
институт, ул. Хлопицкого,
50, Варшава, Польша, 04-275,
эл. почта
jfurman@ikolej.pl,
ORCID
0000-0002-4160-3372
УНИФИЦИРОВАННЫЙ
МЕТОД ПРОВЕРКИ
ЭЛЕКТРОМАГНИТНОЙ
СОВМЕСТИМОСТИ
МЕЖДУ ПОДВИЖНЫМ
СОСТАВОМ
И
СИСТЕМОЙ ОБНАРУЖЕНИЯ ПОЕЗДА
Цель. Счётчики осей все чаще и чаще применяются в системах обнаружения поезда. Датчик колес является основной частью каждой системы подсчёта осей. Параллельно с этим, все более и более сложные железнодорожные транспортные средства, особенно тяговые, являются потенциальным источником помех, влияющих на работу этих систем обнаружения поезда. Это является причиной для проверки электромагнитной совместимости (ЭМС) между оборудованием связи, в частности, системами обнаружения поездов, и новыми транспортными средствами в процессе получения разрешения на их эксплуатацию. Измерение мешающих магнитных полей, генерируемых транспортным средством, должно стать одним из испытаний. Методика. С целью упрощения и унификации применяемых методов испытаний были разработаны стандарт EN 50238 и техническая спецификация TS 50238-3. Спецификация определяет унифицированные методы испытаний. Тем не менее, необходимо проверить, могут ли они заменить различные методы испытаний, используемые в других странах Европейского союза. Это цель европейского исследовательского проекта, финансируемого из ресурсов сети TEN-T. Результаты и научная новизна. Данный проект является частью более крупного проекта по упрощению и ускорению развертывания системы ERTMS. Одно из девяти экспериментальных измерений, запланированных в рамках данного проекта, было проведено в Польше Институтом железнодорожного транспорта.
Ключевые слова: сигнализация; совместимость; железнодорожный транспорт
REFERENCES
Anokhov I.V., Bador M.P., Havryliuk V.I., Sychenko V.H. Pro elektromahnitnu sumisnist elektryfikovanykh zaliznychnykh linii postiinoho strumu [About EMC of electrified railways at DC]. Zaliznychnyi transport Ukrainy – Railway Transport of Ukraine, 2000, no. 2, pp. 10-12.
Sychenko V.H., Zubenko V.A., Bador M.P. Do pytannia rozrobky aktyvnoho filtra tiahovoi pidstantsii postiinoho strumu [On the issue of active filter development of DC railway substation]. Zaliznychnyi transport Ukrainy – Railway Transport of Ukraine, 2006, no. 5, pp. 39-41.
Sychenko V.H. Doslidzhennia pokaznykiv yakosti elektrychnoi enerhii na tiahovykh pidstantsiiakh postiinoho strumu [Research of quality indices of electricity for DC railway substations]. Naukovo-tekhnichnyi zbirnyk «Hirnycha elektromekhanika ta avtomatyka» [Scientific and Technical Collection «Mining electrical engineering and automation»]. Dnipropetrovsk, 2008, issue 81, pp. 53-60.
Sychenko V.H., Zubenko V.A. Otsinka efektyvnosti funktsionuvannia pasyvnykh zghladzhuiuchykh filtriv tiahovykh pidstantsii postiinoho strumu [The effectiveness evaluation of smoothing filters traction substantions DC]. Visnyk Dnipropetrovskoho natsionalnoho universytetu zaliznychnoho transport [Bulletin of Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan], 2008, issue 25, pp. 63-69.
Białoń A., Adamski D., Pajka P. Badanie kompatybilności elektromagnetycznej taboru z urządzeniami wykrywania pociągu z uwzględnieniem normy EN 50238. Problemy Kolejnictwa, 2011, Z. 152, pp. 43–49.
Cholewicki T. Elektryczne linie długie i układy niejednorodne. Warszawa, PWN, 1978.
CLC/TS 50238-3:2013. Railway applications: compatibility between rolling stock and train detection systems. Pt. 3: Compatibility with axle counters. 2013, 16 р.
Mariscotti A., Pozzobon P. Determination of the Electrical Parameters of Railway Traction Lines: Calculation, Measurement and Reference Data. IEEE Trans. on Power Delivery, 2004, vol. 19, issue 4, pp. 1538-1546. doi: 10.1109/TPWRD.2004.835285.
Mariscotti A., Pozzobon P. Synthesis of line impedance expressions for railway traction systems. IEEE Trans. on Vehicular Technology, 2003, vol. 52, issue 2, pp. 420-430. doi: 10.1109/TVT.2003.808750.
Białoń A., Kazimierczak A., Zając W., Skarpetowski G. Model układu zasilania na torze doświadczalnym w Żmigrodzie . Drives and Supply Systems for Modern Electric Traction in Integrated XXIst Century Europe: 4th Int. Conf. (23.09–25.09.1999). Warszawa, 1999.
Mutual design overhead transmission lines and railroad facilities: Report EPRI, EL-646. Electric Power Research Institute. Paolo Alto, CA, 1989. 166 р.
Określenie dopuszczalnych poziomów i parametrów zakłóceń dla urządzeń sterowania ruchem kolejowym: Praca IK 4430/10. Warszawa, 2011. 248 р.
Pawlik M. Control command systems impact on the railway operational safety. Nauka ta progres transportu – Science and Transport Progress, 2015, no. 2 (56), pp. 58-64. doi: 10.15802/stp2015/42160.
Szeląg A. Zagadnienia analizy i projektowania systemu trakcji elektrycznej prądu stałego z zastosowaniem technik modelowania i symulacji. Prace Naukowe PW. Seria: Elektryka, 2002, Z. 123, p. 178.
Untersuchung der Beeinflussung von Glaisstromkreisen. Frage A 122. Bericht nr 9. Utecht, 1973. 184 p.
Żurkowski A., Pawlik M. Railway operation and transport. Control command and signalling. Ruch i przewozy kolejowe. Sterowanie ruchem. Warszawa, 2010. Р.160.
Prof. V. H. Sychenko, Sc. Tech. (Ukraine) recommended this article to be published
Received: Jan., 29. 2016
Accepted: March, 31. 2016
doi
10.15802/stp2016/74709
©
A Białoń., D. Adamski, Ju. Furman, 2016