Э. Д. ЧИХЛАДЗЕ (УкрГАЖТ, Харьков), Л. В. ГАПОНОВА (Харьковская национальная академия городского хозяйства)

ЧИСЛЕННЫЕ ИССЛЕДОВАНИЯ СТАЛЕБЕТОННЫХ ПЛИТ

Проведена чисельна реалізація температурно-вологісних полів у сталебетонній плиті і виконано розрахунок вологісного режиму огороджуючих конструкцій при нестаціонарних умовах.

Ключові слова: вологісний режим, огороджуючі конструкції, нестаціонарні умови, сталебетонна плита

Проведена численная реализация температурно-влажностных полей в сталебетонной плите и выполнен расчет нестационарного влажностного режима современных ограждающих конструкций.

Ключевые слова: влажностный режим, ограждающие конструкции, нестационарные условия, сталебетонная плита

Numeral realization of temperature-humidity of the fields is conducted in a steel-concrete flag and the calculation of the non-stationary humidity mode of modern non-load-bearing constructions is executed.

Keyword: humidity mode, non-load-bearing constructions, non-stationary humidity, steel-concrete flag

Актуальность исследований

В настоящее время широкое распространение получили сталебетонные плиты покрытий и перекрытий промышленных и гражданских зданий. Этому способствуют возможность использования внешней арматуры в качестве опалубки при монолитном способе возведения сооружений; совмещение функций рабочей арматуры с защитным ограждением; монтажа стыков элементов без дополнительных закладных деталей и выступающих частей; упрощения крепления различных коммуникаций и оборудования; понижения высоты элементов за счет отсутствия защитного слоя и компактного расположения арматуры.

Отмеченные конструкции имеют преимущество по сравнению с традиционными железобетонными. Это: простота в технологии изготовления; эффективное использование прочностных свойств. Однако тепловлажностные свойства сталебетонных конструкций исследованы недостаточно. Особенно с применением легких теплогидроизоляционных материалов.

Рекомендуемые в настоящее время в строительных нормах теплотехнические методы расчета ограждающих конструкций основаны на стационарных методах. Эти методы не в полной мере обосновывают влияние кратковременных климатических и других воздействий на изменение тепловлажностного состояния наружных ограждающих конструкций. Как следствие, при проектировании зданий и сооружений многие вопросы решаются на эмпирическом уровне.

Все сказанное обуславливает актуальность исследований в этой области.

Цель и задачи исследования

- 1. Изучить распределение температур по толщине сталепенобетонной плиты 23 см, нагреваемой с одной стороны, и изучить скорость движения зоны испарения T = 100 °C по сечению сталепенобетонной плиты.
- 2. Выполнить расчет нестационарного влажностного режима современных ограждающих конструкций, рассмотрев сталебетонную плиту перекрытия, сочетающую в себе функции несущей и теплоизолирующей конструкции.

Анализ исследований

Экспериментальные исследования стойкости бетонных конструкций показывают определяющую роль влажности бетона. В рабо-Э. Д. Чихладзе, А. И. Жакин, М. А. Веревичева рассмотрено влияние влажности на прочностные свойства бетона, проявляющееся в течение следующих двух процессов прогрева бетона. Первый процесс обусловлен испарением свободной воды. Этот процесс происходит при температуре бетона, не превышающей 100 °C. На этапе испарения свободной влаги разрушение бетона может произойти за счет высокого внутрипорового давления. Согласно [1], растрескивание бетона начинается при выполнении условий

$$d\sigma/dt \ge \left[k_3/\eta_{\text{napa}}\right] \left[\left(p_{\text{max}} - p_0\right)/\Delta\sigma\right],$$
$$\left(\Pi/(1-\Pi)\right) \left(p_{\text{max}} - p_0\right) \ge R_{bt}, \tag{1}$$

где $\eta_{\text{пара}}$ — коэффициент динамической вязкости пара.

Второй процесс связан с распадом молекул цементного камня при температурах 100...800 °С. Его результатом является выделение химически связанной воды. На этом этапе происходит разрушение бетона вследствие изменения его химической структуры, при температуре $T_{\rm kp} = 600 \, ^{\circ}{\rm C}$ происходит стопроцентная дегидратация СН и дегидратация $C_{1.62}SH_{1.5}$. Таким образом, эту температуру можно считать температурой разрушения бетона. Для оценки момента разрушения определялось время, за которое половина сечения плиты прогреется до 600 °C (как будет показано, треть сечения плиты за это время прогревается до температуры 800 °C).

Для применения этой методики необходимо уметь рассчитывать температурно-влажностные поля в плите. Опишем схему этих расчетов.

Методика и результаты исследования

Поле распределения температур и влажности в сечении бетонной плиты из мелкопористого бетона, испытывающего односторонний нагрев, можно описать следующей краевой задачей ($0 \le x \le \ell$):

$$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right); \tag{2}$$

$$\frac{\partial \rho_{3}}{\partial t} = \frac{\partial (j_{3})}{\partial x}; \ p = \rho_{3} T R / (M \varphi_{3});$$

$$r < 10^{-7} \text{ M}: \ j_{3} = -k_{3} \partial \left(p / \sqrt{T} \right) / \partial x;$$

$$k_{3} = (8/3) r \varphi_{3} \sqrt{M / 2\pi R};$$

$$r \ge 10^{-7} \text{ M}: \ j_{3} = -k_{3} \rho_{3} \partial \left(p \right) / \partial x;$$

$$k_{3} = (8/3) r \varphi_{3} \sqrt{M / 2\pi R};$$

$$t = 0: \rho_{3} = \rho_{30}, T = T_{0};$$
(4)

$$x = 0: -\lambda \partial T / \partial x = \alpha_f (T_f - T), \quad \rho_3 = \rho_f;$$

$$x = \ell: \lambda \partial T / \partial x = \alpha_c (T_0 - T), \quad \rho_3 = \rho_{30};$$
(5)

$$x = \sigma(t) : \begin{cases} -\lambda_1 \frac{\partial T}{\partial x} = r_t \rho_{20} \frac{d\sigma}{dt}; \\ \left(k_3 \rho_3 \frac{\partial p}{\partial x_{|\sigma-0}} - k_3 \rho_3 \frac{\partial p}{\partial x_{|\sigma+0}}\right) = \rho_{20} \frac{d\sigma}{dt}; \end{cases} (6)$$

где t — время; ρ — плотность сухого твердого каркаса; c — удельная теплоемкость бетона; λ — коэффициент теплопроводности сухого кар-

каса; T — температура твердого каркаса вместе с паром, K; ρ_3 — плотность пара в микропорах; p — давление пара в микропорах; k_3 — коэффициент фильтрации пара по порам; j_3 — массовая плотность потока пара по порам; M — молярная масса воды; R — газовая постоянная; r_t — удельная теплота парообразования; α_f — коэффициент межфазного теплообмена между нагреваемой поверхностью и огневой средой; α_c — коэффициент межфазного теплообмена между ненагреваемой поверхностью и холодной средой; T_f — температура огневой среды.

Преобразовав уравнение (3) с учетом (7), для ρ_3 получим следующее уравнение:

$$\frac{\partial \rho_3}{\partial t} = \frac{8r}{3} \sqrt{\frac{R}{2\pi M}} \frac{\partial (\rho_3 \sqrt{T})}{\partial x}.$$
 (8)

На нулевом, подготовительном этапе рассчитывается поле температур в сечении плиты до тех пор, пока температура нагреваемой поверхности не достигнет 100 °C.

С этого момента начинается первый этап расчета — определение поля температур в плите с учетом процессов испарения влаги и диффузии образовавшегося пара по микропорам, а также определение внутрипорового давления. Этап завершается, когда граница парообразования достигает ненагреваемой поверхности плиты, т.е. все сечение плиты прогревается не менее чем до 100 °C.

На втором этапе рассчитывается нагрев плиты, не содержащей свободной влаги. Для этого решается задача, учитывающая только теплопроводность.

Для численного исследования указанных процессов написана программа на языке ФОР-ТРАН [1]. Опишем разностную аппроксимацию задачи, реализованную в программе на каждом из указанных этапов расчета.

Поскольку при температуре бетона ниже 100 °С не происходит испарения и плотность пара в порах не изменяется, на этом этапе производится только расчет температурного поля в соответствии с уравнением теплопроводности

$$\rho c \frac{\partial T}{\partial t} = \frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right), \quad 0 \le x \le \ell$$
 (9)

с начальными условиями

$$t = 0$$
: $T(x,0) = T_0$ (10)

и граничными условиями

$$x = 0: -\lambda \partial T / \partial x = \alpha_f (T_f - T),$$

$$x = \ell: \lambda \partial T / \partial x = \alpha_c (T_0 - T).$$
(11)

Осуществляется разностная аппроксимация уравнения (9) и краевых условий (10), (11). Отрезок $0 \le x \le \ell$ разбиваем на n участков, каждый из которых содержит узел (рис. 1).

Рис. 1. Сеточное разбиение области $0 \le x \le \ell$

Во внутренних точках области $0 < x < \ell$, т.е. 1 < i < n разностная аппроксимация уравнения (9) выглядит следующим образом:

$$A_{i}T_{i+1} + B_{i}T_{i} + C_{i}T_{i-1} + D_{i} = 0, A_{i} = -1/R_{i+1};$$

$$R_{i+1} = (x_{i+1} - x_{i})/\lambda_{i+1}; B_{i} = cv_{i}\rho/\tau + 1/R_{i} + 1/R_{i+1};$$

$$cv_{i} = c_{i} \cdot (x_{i+1} - x_{i-1})/2;$$

$$C_{i} = -1/R_{i}; D_{i} = -cv_{i}\rho/\tau \cdot T_{i}^{*},$$
(12)

где T_i — температура твердого каркаса в i -ом узле на текущем шаге по времени; T_i^* — температура твердого каркаса в i -ом узле на предыдущем шаге по времени (на нулевом шаге по времени $T_i^* = T_0$); λ_i — коэффициент теплопроводности твердого каркаса в i -ом узле при температуре T^* ; c_i — удельная теплоемкость твердого каркаса в i -ом узле при температуре T_i^* ; ρ — плотность твердого каркаса; τ — шаг разностной схемы по времени.

Эти уравнения дополняются уравнениями, аппроксимирующими краевые условия:

$$x = 0: A_{1}T_{2} + B_{1}T_{1} + D_{1} = 0;$$

$$x = \ell: B_{n}T_{n} + C_{n}T_{n-1} + D_{n} = 0; A_{1} = -1/r_{2};$$

$$B_{1} = cv_{1}/\tau + 1/r_{2} + \alpha_{f}; cv_{1} = c_{1} \cdot x_{2};$$

$$D_{1} = -cv_{1}\rho/\tau \cdot T_{i}^{*} - \alpha_{f} \cdot T_{f};$$

$$B_{n} = cv_{n}/\tau + 1/r_{n} + \alpha_{c}; cv_{n} = c_{n} \cdot (x_{n} - x_{n-1});$$

$$C_{n} = -1/r_{n}; D_{n} = -cv_{n}\rho/\tau \cdot T_{n}^{*} - \alpha_{c} \cdot T_{0}.$$
(13)

Таким образом, получена трехдиагональная система уравнений (12), (13), которая на каждом шаге по времени решается методом прогонки. Процесс осуществляется до тех пор, пока не выполнится условие $T_1 = T_{\hat{\mathfrak{e}}} = 100$ °C. Время процесса обозначим через t_0 , полученное в результате температурное поле обозначим че-

рез T °. Это температурное поле используется в качестве начального при расчетах на следующем этапе.

Рассмотрим распределение температур по толщине сталепенобетонной плиты 23 см [3], нагреваемую с одной стороны, и изучим скорость движения зоны испарения T = 100 °C по сечению сталепенобетонной плиты.

Пенобетон рассматривался плотностью $y = 1000 \text{ кг/м}^3$; $y = 600 \text{ кг/м}^3$; $y = 400 \text{ кг/м}^3$; $y = 300 \text{ кг/м}^3$ с влажностью 3 %, 10 %, 20 %, 60 %, 75 %.

Зависимость скорости движения зоны испарения T = 100 °C от влажности пенобетона различной плотности, для рассматриваемого времени (50 мин), имеет одинаковый характер.

Для пенобетона плотностью $\gamma = 1000~{\rm kr/m}^3$, имеющий влажность 3 % граница испарения влажной области заканчивается на 0,09 м; при влажности 10 % – 0,060 м; при влажности 20 % – 0,047 м; при влажности 60 % – 0,027 м; тогда как при влажности 75 % граница испарения влажной области достигает 0,022 м.

Для пенобетона плотностью $\gamma = 300~{\rm kr/m}^3$, имеющий влажность 3 % граница испарения влажной области заканчивается на 0,087 м; при влажности 10 % – 0,062 м; при влажности 20 % – 0,048 м; при влажности 60 % – 0,031м; тогда как при влажности пенобетона 75 % граница испарения влажной области достигает 0,028 м (рис. 2).

Рис. 2. Скорость движения границы $100\,^{\circ}$ С в зависимости от влажности для пенобетона плотностью $500\,\mathrm{kr/m}^3$

Темп прогрева сталепенобетонных плит различной плотности до температур выше 100 °C при одинаковой влажности мало отличается при влажности 3 % (рис. 3).

Рис. 3. Скорость движения границы 100 °C в зависимости от плотности для пенобетона влажностью 3 %

При влажности пенобетона, составляющей 20 % распространение перехода границы фаз составляет 0.045...0.047 м для плотности пенобетона 1000 кг/м³ до 300 кг/м³ соответственно (рис. 4).

Рис. 4. Скорость движения границы 100 °C в зависимости от плотности для пенобетона влажностью 20 %

С увеличением влажности до 75 % распространение перехода границы фаз составляет 0,023 м для плотности пенобетона 1000 кг/м 3 , когда для пенобетона плотностью $\gamma = 300$ кг/м 3 распространение перехода границы фаз составляет 0,027 м (рис.5).

Таким образом, численные исследования темературно-влажностных полей показывают, что зависимость скорости движения зоны испарения T = 100 °C от влажности пенобетона различной плотности, для рассматриваемого времени (50 мин), имеет одинаковый характер.

Рис. 5. Скорость движения границы 100 °C в зависимости от плотности для пенобетона влажностью 75 %

Увеличение плотности пенобетона ведет к снижению темпа распространения границы фазового перехода.

Применим методику, предложенную К. Ф. Фокиным [4], и выполним расчет нестационарного влажностного режима современных ограждающих конструкций. Рассмотрим сталебетонную плиту перекрытия [3], сочетающую в себе функции несущей и теплоизолирующей конструкции. Плита включает многопустотную пенобетонную плиту, армированную стальной мембраной, расположенной в нижнем поясе плиты.

Дифференциальное уравнение для диффузии водяного пара имеет следующий вид:

$$\frac{\partial e}{\partial z} = \frac{\mu}{\xi \gamma} \cdot \frac{\partial^2 e}{\partial x^2} \,, \tag{14}$$

где e — упругость водяного пара; μ — коэффициент пароемкости материала; ξ — удельная пароемкость материала.

Для определенного значения относительной упругости водяного пара величина относительной пароемкости материала будет:

$$\xi_0 = \frac{d\omega}{d\omega} 1000, \ \xi = \frac{\xi_0}{E},$$
 (15)

где E — максимальная упругость водяного пара, соответствующая температуре t.

Рассмотрена общая формула для определения упругости водяного пара в любой плоскости через интервал времени ΔZ по упругостям в этой же плоскости и в двух соседних плоскостях в предыдущий момент (16, 17).

$$\frac{\partial e}{\partial z} = \frac{\mu}{\xi_0 \gamma} E_t \frac{\partial^2 e}{\partial x^2}; \tag{16}$$

$$\frac{\Delta e}{\Delta Z} = \frac{\mu}{\xi_0 \gamma} E_t \frac{\Delta^2 e}{\Delta x^2}.$$
 (17)

Расчет изменения упругости водяного пара во времени сводится к последовательному вычислению упругостей во всех плоскостях стенки через равные интервалы времени ΔZ (18, 19)

$$e_{n,z+1} = e_{n,z} + \frac{\mu}{\xi_0 \gamma} E_{\tau} \frac{\Delta Z}{\Delta x^2} (e_{n+1,z} - 2e_{n,z} + e_{n-1,z})$$
 (18)

$$\Delta e_0 = \frac{2\Delta Z}{\Delta x \gamma \xi_0} E_0 \left(\frac{e_s - e_{0,z}}{R_{s,n}} - \frac{e_{0,z} - e_{1,z}}{R\Delta n} \right). \quad (19)$$

где Δe_0 — изменение упругости водяного пара на поверхности, граничащей с воздухом, за время ΔZ в мм. рт. ст.; E_0 — максимальная упругость водяного пара на этой поверхности в мм. рт. ст.

$$e_{0,z+1} = \frac{R_{\Delta n}e_s + R_{s.n.}e_{1,z}}{R_{s.n} + R_{\Delta n}}$$
(20)

В табл. 1 и 2 помещены исходные данные для расчета влажностного режима современных ограждающих конструкций при нестационарных условиях и приведены типы ограждающих конструкций температурно-влажностный режим которых изучался.

Таблица 1

Типы ограждающих конструкций

Наружная ограждающая конструкция	Чердачная плита перекрытия	Предложенная многопустотная сталебетонная плита				
	1 1					
	200000	20000000				
1 – профилированный лист;	1 – утеплительSUPERROCK;	1 – утеплитель SUPERROCK;				
2 – утеплитель PANELROCK;	2 – железобетонное	2 – сталебетонная пустотная				
3 – кирпич полнотелый	перекрытие	плита перекрытия				

Таблица 2

Климатические расчетные данные для г. Харькова

Месяц	I	II	III	IV	V	VI	VII	VIII	IX	X	XI	XII	Сре- дняя
Относительная влажность	84	83	81	68	60	64	66	64	70	77	86	87	74
Температура наружного воздуха	-7	-5,7	-0,3	8,9	15,6	19,0	20,4	19,5	14,1	7,3	1,3	-3,3	7,5
Средняя расчетная влажность	5,65	5,6	5,29	4,52	4,03	3,95	3,93	3,94	4,23	4,78	5,29	5,53	4,72

Сезонное изменение влажности в сталебетонной плите описывается следующей функцией:

$$y = a + b \cdot \cos(ca + d), \qquad (21)$$

где a=4,728; b=0,948; c=0,523; d=-0,449 – постоянные коэффициенты.

Выводы

- 1. Проведенные численные исследования температурно-влажностных полей позволяют сделать вывод, что зависимость скорости движения зоны испарения $T=100\,^{\circ}\mathrm{C}$ от влажности пенобетона различной плотности, для рассматриваемого времени (50 мин), имеет одинаковый характер.
- 2. Увеличение плотности пенобетона ведет к снижению темпа распространения границы фазового перехода.
- 3. Выполненные расчеты сезонного распределения влажности в сталепенобетонной плите при нестационарных условиях показывают, что изменение влажности не превышает допустимых пределов 6 %.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Чихладзе, Э. Д. Огнестойкость бетонных и сталебетоных конструкций [Текст] / Э. Д. Чихладзе, А. И. Жакин, М. А. Веревичева. Х.: Хар-ДАЗТу, 2000. Вып. 40. 97 с.
- 2. Жакин, А. И. Теория тепломассообмена в пористых средах [Текст] / А. И. Жакин, Э. Д. Чихладзе, М. А. Веревичева // Изв. ВУЗов. Строительство. 1998. № 1. С. 111-116.
- Гапонова, Л. В. Компьютерные исследования теплофизических свойств сталебетонных плит [Текст] / Л. В. Гапонова // Наукові нотатки: міжвуз. зб. за напрямом Інженерна механіка. – Луцьк: ЛНТУ. – Вип. 25, Ч. І. – С. 83-88.
- 4. Фокин, К. Ф. Строительная теплотехника ограждающих частей зданий [Текст] / К. Ф. Фокин. М.: Стройиздат, 1973. 287 с.

Поступила в редколлегию 17.05.2011. Принята к печати 25.05.2011.