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IMPACT OF MATRIX INVERSION ON THE COMPLEXITY
OF THE FINITE ELEMENT METHOD

Purpose. The development of a wide construction market and a desire to design innovative architectural build-
ing constructions has resulted in the need to create complex numerical models of objects having increasingly higher
computational complexity. The purpose of this work is to show that choosing a proper method for solving the set of
equations can improve the calculation time (reduce the complexity) by a few levels of magnitude. Methodology.
The article presents an analysis of the impact of matrix inversion algorithm on the deflection calculation in the
beam, using the finite element method (FEM). Based on the literature analysis, common methods of calculating set
of equations were determined. From the found solutions the Gaussian elimination, LU and Cholesky decomposition
methods have been implemented to determine the effect of the matrix inversion algorithm used for solving the equa-
tions set on the number of computational operations performed. In addition, each of the implemented method has
been further optimized thereby reducing the number of necessary arithmetic operations. Findings. These optimiza-
tions have been performed on the use of certain properties of the matrix, such as symmetry or significant number of
zero elements in the matrix. The results of the analysis are presented for the division of the beam to 5, 50, 100 and
200 nodes, for which the deflection has been calculated. Originality. The main achievement of this work is that it
shows the impact of the used methodology on the complexity of solving the problem (or equivalently, time needed
to obtain results). Practical value. The difference between the best (the less complex) and the worst (the most com-
plex) is in the row of few orders of magnitude. This result shows that choosing wrong methodology may enlarge
time needed to perform calculation significantly.

Keywords: finite element method; FEM; LU; Cholesky; Gaussian elimination; decomposition methods; optimi-
zations

Introduction basic methods used to solve set of linear equations
are presented. The next point is dedicated to the
presentation and discussion on the complexity of
the implemented algorithms, depending on the
implemented matrix inversion method and the
number of nodes used in calculations. Summary of
the article is included in section six.

The development of a wide construction market
and a desire to design innovative architectural
building constructions has resulted in the need to
create complex numerical models of objects having
increasingly higher computational complexity.

There are a lot of numerical methods designed
to provide an approximate solutions to the

considered problem including finite element Purpose

method (FEM), boundary element method (BEM)
or finite difference method (FDM).

The article is organized as follows. The first
section describes the main characteristics of Finite
Element Methods for the beam element. The
second point concerns the computational
complexity of the FEM. In the next point, an
estimate of the complexity of the individual stages
of the FEM is presented. In the fourth section the

The purpose of this work is to show that
choosing a proper method for solving the set of
equations can improve the calculation time (reduce
the complexity) by a few levels of magnitude.

Methodology

FEM for the beam element: Finite element
method is one of the most popular tools used in
engineering calculations. One of the basic
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assumptions of this method is the abandonment of
the analytical division of the area for the division
into a finite number of elements [12]. The
calculation takes place only at specific points,
called nodes, and the results for the rest of the area
are approximated using, so-called, shape functions
on the basis of the results obtained for each node
[10], [2], [4].

The basic steps in the FEM for the beam
element can be described as follows [7], [8]:

— In the first step, we divide the beam in the
given number of finite elements and select nodes.
We accept both the local and the global coordinate
system,

— Number of components of the displacement
vector ¢, need to be set,

— Shape functions N need to be assumed:

N:[NDNZ,N3,N4] (1)

Shape functions for the beam construction can
be assumed as a third degree polynomial written in
the classical form as:

N, =113(2x3 —3I +z3) 2)
N, =Zi3(1x3 — 215 +xz3) 3)
N, =Zl3(—2x3 +3lx2) (4)
N, :%(Zx3 —12x2) 5)

or in the matrix form:

N= 113[2;8 302 4 B, I = 2057 4l

=22 4307, I - x|, (6)

The stiffness matrices K, are determined in
each node

12 6/ -12 6l
6/ 41 -6 2I°
k=2 ™
Pl-12 -61 12 -6l

6/ 21 -6 4I°

Calculation of substitute nodal loads matrix

! bl
P, = [N"b,dx = 6[6, 1,6,~1] (8)
0

Calculation of the B matrix that describes the
deflection at each point of the element with the
following equation:

B=LN ©)

where L is the differentiation operator described as
follows:
d2
L=—y—
dx’

Substituting equations (6) and (10) to (9) gives:

(10)

B=LN = —113[12x — 61, 6lx — 412

~12x + 6, 6zx—212], (11)

The stiffness and nodal load matrices are
aggregated to the global system with application of
the boundary conditions.

We solve the equation for the balance of the
structure (12) identifying unknown deflections u:

(12)

Computational complexity: A key issue
regarding the performance of all algorithms,
including FEM [7], is the computational
complexity or, in other words, computing
requirements. We call computational requirements
all the necessary arithmetic operations that need to
be performed during calculations.

The concept of computational complexity is
also associated with the issue of the resources
availability. Resources can be defined in the form
of time or memory [8], [9].

— Time complexity — the measurement of the time
complexity is performed by the calculation of the
number of basic operations that depend on the size of
the input data. Measuring the actual clock time can
vary depending on the implementation of the
algorithm, computing machine or a compiler used.

— Memory complexity — the memory comp-lexity
expresses the amount of memory used, expressed as
the number of memory cells in a function of the size of
input data or expressed in bits or bytes, to perform
specific computing.

Ku = p,
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The creators of complexity theory are Juris
Hartmanis and Richard Stearns [3]. It can be said
that the larger the scale of the problem and thus the
larger size of the input data, the more resources it
will need to perform computing operations [12].

A common way to compare the complexity of
various algorithms is to determine their asymptotic
growth rate. It is a measure of the time
requirements with increasing size of the input data.
It can be said that it describes how quickly time
requirements are changing.

To describe the asymptotic growth rate so-
called O notation is used. It can be said that
a function f has a complexity of O(g(n)) if there is
a positive constant value ¢ and non-negative value
N satisfying the condition:

f(n)<cg(n) forn>N. (13)
In the remainder of this article the above
notation will be wused to determine the

computational complexity of different stages of
FEM algorithm.

Estimating the complexity of the FEM
algorithm: In this section we will investigate the
complexity of the different stages of the FEM
algorithm and we will assess its impact on the
complexity of the entire algorithm.

a) Dividing the Q area into finite elements.

In the case of beam element, this step has
a very low complexity, which can be estimated as
O(n).

b)Adoption of shape functions vector N, and
degrees of freedom g, .

The complexity of this stage is constant and is
equal to O(1). It is due to the fact that regardless
the size of the problem (e.g. number of nodes), this
step is performed only once.

a) Calculation of elementary stiffness matrices
K, and nodal loads vectors Q,.

This step, similar like the previous one, has the
complexity of the order of O(1). This is because
the number of selected nodes does not affect the
complexity of calculating the elementary matrices
K, and Q,.

b) Aggregation of the stiffness matrix K and the
loads vector Q for the entire object.

The complexity of this stage is linear and thus
can be noted as O(n). This is related to the need to
add the K, matrix to the aggregated matrix K

n-times.

b)Boundary conditions.

Because taking into account boundary
conditions takes place only at the ends of the beam
it not depend on the number of nodes. It is
therefore assumed that this step has a complexity
of the order of O(1).

a) Solving Kg=0 equation
On the basis of the literature it can be stated that
the complexity of this stage is in the order of O(n’).

Methods of solving equations set: As shown in
section 4 the most complex part of each of the
algorithms is a step designated to solve the set of
equations. This problem is even more complex in
the case of finite element methods because this
method has to generally deal with matrices of
considerable sizes, which entails the need of
conducting significant number of mathematical
operations. Below, collection of the most popular
methods for solving linear sets of equations (and
matrix inversion), which can be found in the
literature is presented.

The method of algebraic complements:
Application of this method requires the
appointment of an inverse matrix which

subsequently need to be multiplied by the vector of
the right side values. The algorithm for inverse
matrix calculation can be presented in a following
steps [3]:

— Calculation of the determinant of the matrix
A,

— Calculation of the algebra complements of all
elements of a matrix,

— Transposition of the matrix containing
algebraic complements,

— Determination of the inverse matrix.

These steps can be represented by the following
formula:

T
Dll DIZ 1n
A—l — 1 D21 D22 D2n (14)
det 4 :
Dnl Dn2 Dnn

where det4 is the determinant of a matrix 4 and the
D, ., D, , .., D, represent the algebraic
complement values of consecutive elements of
matrix 4 [12].

Gauss-Jordan method: This method is another
method whose immediate goal is to determine the
inverse matrix (further step in the form of

doi 10.15802/stp2016/67358

192

© M. Sybis, A. Smoczkiewicz-Wojciechowska, A. Szymczak-Graczyk, 2016



ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayka Ta nporpec tpancropry. Bicauk JIHinpornerpoBcbkoro
HAL[{OHAJIILHOTO YHIBEPCUTETY 3ali3HUYHOTO Tpancmnopty, 2016, Ne 2 (62)

TPAHCIIOPTHE BY AIBHULITBO

multiplication of inverse matrix and right values
vector need to be performed). Gaussian elimination
is also called matrix method of the attached
identity matrix.

To find the inverse of a matrix A the following
set of equations need to be solved:

AB=1 (15)

where: A — output matrix, B — inverse matrix, / —
identity matrix. It is necessary for both sub-

matrices [A|I ] to multiply them by matrix B, to

get the matrix

[4B|1B] (16)

Taking into account that B=A4" the
[A]1 ]—)[1 | A’IJ is obtained. In order to get the

inverse of matrix 4 the sub-matrix 4 in the [ 4]

need to be converted to unitary sub-matrix with the
use of elementary operations on the rows.

Gauss elimination: This method was developed
by a famous German mathematician Carl Friedrich
Gauss [6]. Its purpose is to bring the matrix to
form a stepwise matrix (Lower or Upper triangular
matrix) using elementary operations on the rows. It
should be also checked the existence of solution by
using the Kronecker-Capelli theorem.

Cholesky decomposition: Every positively
definite matrix 4 can be written as [11, 5, 13]

A=L-I" (17)

where: L — the lower-triangular matrix with
positive values on the main diagonal, referred to as
the «square root» of positive definite matrix A.

In equation (17), the unknowns are the
elements of the matrix L:

Ly, o o o

L, 1 mi

L= (18)

lnl Zn2 e lrm

Using the formulas for calculating the matrix

product it is possible to describe the relations that

allow to calculate individual elements of the matrix
L. As aresult:

{an Azﬂ}:{lll 0} b L€1 _
Ay Ay (L Lpl| 0 LY,

:{ 1121 llngl } (19)
Ly L21L€1 + Lzngz

thus
hy = Vi (20)
and
1
L21 l_Azl (21)

It can be also noticed that:

1
Lzngz = Azz _Lzngl = Azz __AZIAZTI (22)
11

Solving of equations Ax=» is performed in

two stages:
Ax=b (23)
LL x=b (24)
Ly=b (25)
LI'x=y (26)
Solving the Ly =bequation
b
n=—- 27)
le
b=
v, /R YU/ j=23,..n (28)
L
Solving the L x = y equation
X, = zy_ (29)

S/
Vi _Zk=i+1 ik
xi ==
L.

12

Li=n-1Ln-2,.,1 (30)

Expression (22) is so-called the Schur comple-
ment. Due to the positive value of the expression
for positive definite matrix, decomposition algo-
rithm can be applied to the matrix diminished by
first row and first column.

LU decomposition: The method of LU
decomposition is to produce a matrix A4 as
a product of two triangular matrices: lower L and
upper U with the addition of zero elements, above
and below, respectively, the main diagonal of the
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matrix [1]. This formally can be written as:

A=LU 31
where:
L, O 0
Ly b 0
L=|" : 32
0 (32)
lnl ln2 nn
and
Uy Uy Uy,
0
v=| . "= “an (33)
0 0 u

Analyzed set of equations can be described as:
LUx=y (34)

Solving the equation (34) is achieved by
solving two sets of equations:

Lz=y (35)

Ux=z (36)

In this way, we obtain a searched vector x.

Findings

This section provides an analysis of the
computational requirements of different matrix
inversion algorithms for finite element method.

The calculations were performed for the fixed-
end beam of the length equal to [, = 6.5 m, loaded
with a uniformly distributed load ¢ equal to 15 kN
/ m, which diagram is shown in Fig. 1.

Fig. 1. Scheme of the investigated beam

For each method, the calculations of deflection
of the beam, which is presented in Fig. 2, divided
into 5, 50, 100 and 200 nodes have been
performed. The process of calculation of the
equation (12) has been carried out using the Gauss
method, Cholesky decomposition and LU
decomposition. In addition, each method has been
further optimized. This optimization consisted in
the use of some knowledge of matrices. For

example, it has been taken into account that the
matrices are symmetrical and contain a large
number of coefficients equal to 0, which meant
that some multiplications and additions can be
omitted when performing calculations. The
obtained results have been shown in the latter part
of this section.

Fixed-end Beam, 5 nodes

0
—— Accurate|
0.002 - ——FEM
0.004 |
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Fig. 2. Deflection of the beam for 5 (top) and 50
(bottom) nodes calculated with the use of FEM
and accurate methods

Table 1 presents the number of mathematical
operations performed during calculation of the de-
flection of the beam divided into 5 nodes, depend-
ing on the implemented method for matrix inver-
sion (solving equation set).

Second column shows the assignment
operations necessary to be performed. Assignment
operations are the operations of saving the
calculated values in the memory of the computer
(after the value is calculated it needs to be stored in
the memory). The third column shows the number
of addition operations and in subsequent columns,
number of multiplications, divisions and square
root calculations are presented. Last column
presents the total number of required operations
(sum of the operation of the preceding columns).
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Table 1

Number of mathematical operations for different
implemented algorithms, FEM methodology,
division into 5 nodes

Method Gauss| Opt. | LU | Opt. |Cholesky| Opt.
Gauss LU Cholesky

Assignments 106 | 74 | 72 | 60 98 84
Additions 85 | 56 [120] 56 91 79
Multi-plications| 85 | 56 |120| 56 65 54
Divisions 21 | 18 | 21 | 18 32 31
Square roots 0 0 0 0 6 6
Total 2971204 [333]190| 292 254

Hereafter the name basic methods has been
used regarding the Gauss, LU decomposition and
Cholesky decomposition methods while the term
optimized methods has been used regarding the
optimized versions of these algorithms.

Comparing the Gauss method to the optimized
Gauss method it can be noticed that the number of
arithmetical operations performed is reduced by
about 31%. For the LU decomposition method and
its optimized version complexity reduction is at the
level of 43%. In the case of optimized Cholesky
decomposition method compared to its non
optimized version the profits is equal to
approximately 13%.

While taking into account the non optimized
versions of the algorithms the number of
operations performed by a Cholesky method is the
smallest. However, while taking the optimized
versions into account more preferably is to use LU
and Gauss method.

For 50 nodes, we can observe a significant re-
duction in the number of mathematical operations
required to perform for optimized algorithms com-
pared to basic methods. The obtained results are
shown in Table 2. Reduction of the number of
arithmetic operations in the Gauss method and LU
decomposition compared to their non optimized
methods is about 99.5%. The difference between
these two optimized methods is however low and
is equal to about 2.5% in favor of the LU method.
Basic Cholesky method gives results more than
17% better (in terms of required complexity) com-
pared to other basic methods. Optimization of this
method gives a gain of about 96%. However, the
situation is changing if optimized methods are

compared because other methods are more than
80% less complex.

Table 2

Number of mathematical operations for different
implemented algorithms, FEM methodology,
division into 50 nodes

Method | Gauss | Opt. | LU |Opt. |Cholesky| Opt.
Gauss LU Cholesky

Assign- 304096|1784|18432(1320{161408| 2244
ments
Additions [299440|1406446880[1406/299536| 14884
Multi- 29944011406 1446880[1406|156560| 1674
plications
Divisions | 4656 | 378 | 5646 | 378143072 | 13306
Square 0 0 0 0 96 96
roots
Total 907632149749168484510|760672 | 32204

For 100 nodes (see Table 3) application of the
optimized methods result in a reduction in the
number of arithmetic operations performed in
relation to the basic methods, even by three orders
of magnitude, giving a gain of 99.9%. It is also
worth noting that optimized LU decomposition
method requires 10 % less operations than the
optimized Gauss method and 92% fewer than the
Cholesky method.

Table 3

Number of mathematical operations for different
implemented algorithms, FEM methodology,
division into 100 nodes

Method | Gauss | Opt. LU |Opt. |Cholesky| Opt.
Gauss LU Cholesky

Assign- 25481963684 | 76832 [2720/1312808| 4644
ments
Additions2528890[ 2906 378378029062529086| 59834
Multi-  2528890[2906 37837802906/1293110| 3474
plications
Divisions| 19306 | 778 | 19306 |778[1236172| 56556
Square 0 0 0 0 196 196
roots
Total 7625282|10274{76636989310[6371372( 124704
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Table 4

Number of mathematical operations for different
implemented algorithms, FEM methodology,
division into 200 nodes

Method Gauss Opt. LU
Gauss
Assign-ments 20856396 7484 313632
Additions 20777790 5906 31127580
Multi- 20777790 5906 31127580
plications
Divisions 78606 1578 78606
Square roots 0 0 0
Total 62490582 20874 62647398
End of table 4
Method Opt. LU Cholesky  |Opt. Cholesky
Assign-ments 5520 10585608 9444
Additions 5906 20778186 239734
Multi- 5906 10506210 7074
plications
Divisions 1578 10272372 233056
Square roots 0 396 396
Total 18910 52142772 489704
By analyzing the amount of necessary

operations to be performed for 200 nodes (Table 4)
it can be noticed that the difference between the
optimized versions and the basic algorithms is in
the order of four orders of magnitude (profit is
more than 99.99%) for the Gauss method and LU
decomposition.  Profit for the  Cholesky
decomposition between the basic version and its
optimized version reaches the value of 99%.

Similar as for 100 nodes the difference between
the optimal versions of LU and Gauss is still
around 10% (in favor of the LU decomposition
method). Optimized Cholesky method offers the
highest complexity compared with other optimized
algorithms where number of required operations is
more than 95% lower.

The basic version of Cholesky method is about
16% less complex compared to other methods
considered.

Originality and practical value

The main achievement of this work is that it
shows the impact of the used methodology on the
complexity of solving the problem (or
equivalently, time needed to obtain results). The
difference between the best (the less complex) and
the worst (the most complex) is in the row of few
orders of magnitude. This result shows that
choosing wrong methodology may enlarge time
needed to perform calculation significantly.

Conclusions

In the article the impact of the method used for
calculating the equations set on the number of
arithmetic operations performed is investigated.
Deflection of the beam when divided into 5, 50,
100 and 200 nodes using the finite element method
has been calculated. To solve the set of equations
the Gauss method, LU and Cholesky
decomposition methods were implemented. In
addition, for each method an optimized version of
the algorithm was also investigated, what was
intended to further reduce the number of
computational operations performed. It was found
that in order to maximally reduce the number of
necessary to conduct operations at first the
advantage of all known properties of the resulting
matrix should be taken. Afterwards, the selection
of a method that aims at the highest possible
reduction of complexity in solving the system of
equations should be made.

In the case of optimized methods number of
operations can be reduced, by several orders of
magnitude. It is also important to choose a proper
method because in the basic versions it is
preferably to choose Cholesky method while the
worst choice is the LU decomposition. However,
the situation changes for the optimized methods.
The best results are observed for LU
decomposition method giving a gain of 3-10%
compared to the Gaussian method, and more than
90% compared to the for the Cholesky method.

It was also found that the highest differences
between the complexity of the methods are
observed if the beam is divided into a larger
number of nodes.

doi 10.15802/stp2016/67358

196

© M. Sybis, A. Smoczkiewicz-Wojciechowska, A. Szymczak-Graczyk, 2016



ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayka Ta nporpec tpancropry. Bicauk JIHinpornerpoBcbkoro
HAL[{OHAJIILHOTO YHIBEPCUTETY 3ali3HUYHOTO Tpancmnopty, 2016, Ne 2 (62)

TPAHCIIOPTHE BY AIBHULITBO

LIST OF REFERNCE LINKS 8.  Metody komputerowe w liniowej mechanice

. . konstrukcji / C. Cichon, W. Cecot, J. Krok,

1. A parallel domain decomposition method for 3D P. Plucifski. — Krakéw - Politechnika Krakowska
unsteady incompressible flows at high Reynolds 2009, — 428'p. ' ’

number / R. Chen, Y. Wu, Z. Yan [et al.] // J. of 9.
Scientific Computing. — 2013. — Vol. 58. — Iss. 2.
—P. 275-289. doi: 10.1007/310915-013-9732-x.

2. Balonek, K. Wprowadzenie do metody elementow
skonczonych / K. Balonek, S. Gozdur ; Akademia w  mechanic konstrukcji / G. Rakowski,

Gérniczo Hutniclza. B Krako'\iv, 2b()09. ) Z. Kacprzyk. — Warszawa : Oficyna Wydawnicza
3. Drwal, M. Algorytmy algebry numerycznej. Politechniki Warszawskiej, 2005. — 434 p.
Rozwiazywanie ukladu réwnan liniowych /

M. Drwal. — Wroctaw : Politechnika Wroctawska,

Papadimitriu, Ch. H. Ztozono$¢ obliczeniowa /
Ch. H. Papadimitriu. — Warszawa : Wydaw-
nictwa Naukowo-Techniczne, 2002. — 540 p.

Rakowski, G. Metoda Elementow Skonczonych

Vandenberghe, L. Applied Numerical Computing
(lecture) [Electronic resource] / L. Vandenberghe.

201.2'. . — Available at: http://www.ee.ucla.edu/vandenbe/-
4. Dzierzankowski, G. Samo.ucgek Meto‘.ly Elemen— eel03.html. — Title from the screen. — Accessed
tow Skonczonych / G. Dzierzankowski, M. Sitek. 10.04.2016.

— Warszawa : Oficyna Wydawnicza Politechniki 2.
Warszawskiej, 2012. — 106 p.

5. Geijn, R. A. van de. Notes on Cholesky
Factorization / R. A. van de Geijn // Report TX
78712 University of Texas at Austin, Department
of Computer Science. — Austin, 2011. — P. 1-16.

6. Introduction to Algorithms / T. H. Cormen,

C. E. Leiserson, C. Stein, R. L. Rivest. —

Sybis, M. Analiza zlozonosci metody rdznic
skonczonych (MRS) oraz metody -elementow
skonczonych (MES) na przykladzie elementu
belkowego / M. Sybis, A. Smoczkiewicz-Woj-
ciechowska, A. Szymczak-Graczyk // Projek-
towanie, eksploatacja, diagnostyka i naprawy
wybranych obiektow budownictwa ogdlnego

bridee : Th i hydrotechnicznego : wmonografia / Instytut
Cam nage - The MIT .Press, 1990. — 1292 P Budownictwa 1 Geoinzynierii ~ Uniwersytet
7.  Khawaja, H. Application of a 2-D approximation Przyrodniczy. — Pozna, 2015. — P. 135-151.

technique for solving stress analyses problem in 13.
FEM / H. Khawaja // Intern. J. of Multiphysics. —
2015— Vol. 9. — Iss. 4. — P. 317-324. doi:
10.1260/1750-9548.9.4.317.

Younis, G. Practical method to solve large least
squares problems using Cholesky decomposition /
G. Younis // Geodesy and Cartography. — 2015. —
Vol. 41. — Iss. 3. — P. 113-118. doi: 10.3846/-
20296991.2015.1086118.

M. CBIBAC'", A. CMOUKEBNY-BOMIIEXOBCKA®", A. IIMMYAK-TPAUNK®

1*Ka(b. «I'paxxgaHCcKas U UHKCHEPHAs reosorus», I103HaHbCKUM yHUBEPCUTET €CTECTBEHHBIX HayK, Y. IInaTkoBcka, 94,
IMo3nanb, [Tonbmia, 60-649, a1. modra msybis@up.poznan.pl, ORCID 0000-0002-0032-6313

2*Ka(b, «I'paxxnaHckas U MHXKCHEpHas reosorus», I103HaHbCKUI YHUBEPCUTET €CTECTBEHHBIX HayK, yi1. IInaTkoBcka, 94,
IMo3uaus, [Tonbina, 60-649, 1. moura asw72@up.poznan.pl, ORCID 0000-0002-7202-6678

3*Ka(b. «I'paxxnanckas 1 MHXKEHEpHAs reosorus», [103HaHbCKMI yHUBEPCUTET €CTECTBEHHBIX HayK, Y. IInaTkoBcka, 94,
[o3nanb, [Toneoia, 60-649, sn. moura agraczyk@up.poznan.pl, ORCID 0000-0002-1187-9087

BJIUAHUE OBPAINEHUA MATPUIIBI HA CJIOKHOCTb METOIA
KOHEYHbLIX 2JIEMEHTOB

Heab. Pa3zBuTHe OOIIMPHOTO CTPOMTENHFHOIO pBhIHKA M CTPEMIICHHE IPOEKTHPOBATh WHHOBAIIMOHHbIE
APXUTEKTYpHBIE CTPOUTENBLHBIE KOHCTPYKIMH ITPUBENN K HEOOXOAMMOCTH CO3aHUsI CIIOKHBIX YUCIEHHBIX MOJENIEH
00BEKTOB, Y KOTOPHIX BO3PACTaeT CIOKHOCTH BhIYKMCIEHHH. [{enb maHHOTO MccieqoBaHMs — MOKa3arh, YTO BBIOOD
NPaBWIBHOTO METO/A JJIsl PELICHUS CUCTEMbl YPAaBHEHHH MOXET YIy4IIUTh BpeMsi pacdera (yMEHBLIMTh
CJIO)KHOCTB) Ha HECKOJIBKO YPOBHEH BEMHMYMHBI (aMIUIUTYIb!). MeToauka. B cTaTtbe mpencTaBiieH aHAIN3 BIUSHUSL
anropuT™Ma OOpalleHUs MaTPHUIBI HAa pacueT mporuda B Oanke ¢ HCHOJIH30BAHHEM METOAAa KOHEUHBIX JICMEHTOB
(MKD3). Ha ocHoBe aHanmm3a ITUTEpaTypbl OBUIM OIPEAEICHBI OOIIFEe METOABl PACUETHBIX CHCTEM YypaBHEHHUH.
Vcnonp3ys HaiiieHHBIE peleHus], ObUIH MPUMEHEHBI METOJIbl NCKITIOUeHHs nepeMeHHbIX ['aycca, pasmoxerns LU
MAaTpUIBl M Pa3JOXKEHHS XOJEIKOTO C IENBI0 ONpPEACNCHUS BIWSHUS alroOpUTMa OOpamieHus MAaTpHIb,
HCTIONB3YEMON ISl PEIIeHUs] KOMITIEKCa YPaBHEHHH, HA KOJIMYECTBO BBITOJHEHHBIX BBIYMCIHTEIBHBIX OTEPALIUil.
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TPAHCIIOPTHE BY AIBHULITBO

Kpome Toro, kaxplii W3 peasn30BaHHBIX METOZOB ObUI B JAJbHEWIIEM ONTHMU3UPOBAH, TEM CAMbIM YMEHbIIIAs
KOJIMYECTBO HEOOXOAMMBIX apu(MeTHdecKux orepauuid. Pe3yjabraTbl. OTH ONTHMH3aLUK OBUIM BBIOJIHEHBI
C WCIIOJIb30BAaHUEM ONPEEJICHHBIX CBOMCTB MATpPHIIbI, TAKUX KAaK CUMMETPHS WJIM 3HAYMTEILHOE YHCIO HYJIEBBIX
3JIEMEHTOB B MaTpulle. Pe3ynbTaThl aHamM3a MpeACTaBIICHbI I paszeicHus Oanku Ha 5, 50, 100 u 200 y3oB, 1ist
KOTOPBIX ObUT paccuuTaH mnporu6. HayuHast HoBu3Ha. [J1aBHBIM JOCTHXKCHHUEM NAaHHON pabOTHI SIBJISETCS TO, YTO
OHa IIOKa3bIBA€T BJIMSIHUC choanyeMoﬁ MCETOAUKH Ha CJIOKHOCTH PCIICHHUA 3aJadun (I/IJ'II/I, 4YyTO OAHO M TO KE€, Ha
BpeMsi, HEOOXOAUMOE JUIA TMONy4YeHHs pe3yibraroB). IIpakTmdeckasi 3HAYMMOCTh. PasHHIIA MEKAY JTyYIINM
(MeHee CIO0KHBIM) peIIeHHEeM 3aJayd ¥ XyamwM (0oJiee CIOKHBIM) HAXOTUTCS B Psie HECKOJIBKUX ITOPSIKOB
BEJIMYUHEI. Pe3ylbTaThl MOKA3bIBAIOT, YTO MPU BHIOOPE HEMPABIIIEHOTO METOAA MOXET 3HAYHTEIEHO YBEITUIUTHCS
BpeMsi, HEOOXOAUMOE ISl BHITIOIHEHHUS pacyeTa.

Kniouesvie cnosa: MeTos KOHEUHBIX J1eMEHTOB; pasinoxenne LU marpuirer; X0oJIenKuid; NCKIIIOYCHAE METOI0M
laycca; MeToabI pa3inoKeHus; ONTHMHU3AIUI
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BIIVIUB 3BEPHEHHSA MATPUIII HA CKIIAJHICTbD METOLY
KIHHEBUX EJIEMEHTIB

Meta. Po3BHTOK BeIMKOTro OYZIBEIBHOIO PHHKY Ta IparHEHHS IPOEKTYBAaTH I1HHOBAIHHI apXiTEeKTypHi
OyzmiBenmbHI KOHCTPYKIIi TMPU3BENH 0 HEOOXITHOCTI CTBOPEHHS CKIAJHUX YHCENFHUX MOJAETCH 00’ €KTIiB, y SKHAX
3pocTaEe CKIAIHICTE OOYHCIeHb. MeTa HaHOTO MOCHIIKEHHS — IOKa3aTH, M0 BHOIp MPaBMIBHOTO METOMY IS
BUpIIMIECHHS CHCTEMH DPIBHSHb MOXE MOJIMIINTA Yac PO3PaxyHKY (3MEHIIWTH CKJIAaTHICTh) Ha KiNbKAa TOPSIKIB
BeMYMHM (aMIUTITYyau). MeToauka. Y CTaTTi MpEACTaBICHUN aHaNli3 BIUIMBY ITOPUTMY 3BEpPHEHHS MaTpHIll Ha
pO3paxyHOK MPOTHHY B Oaimi 3 BUKOPUCTaHHAM Meroxy ckimdeHHux enemeHTiB (MCE). Ha ocuoBi amamizy
miTepaTypu OynyM BH3HAYEHI 3arajbHI METOOM PO3PAaXyHKOBHX CHCTEM piBHSHb. BHKOpHCTOBYIOUM 3HaiieHi
pilieHHsi, OyJIM 3aCTOCOBaHI METONM BHUKIIIOYEHHs 3MiHHUX [aycca, posknaganus LU martpuii i po3kianaHHs
Xoneukoro 3 METOI BHM3HAUEHHS BIUIMBY JITOPUTMY 3BEPHEHHS MaTpHIli, BUKOPHCTOBYBAHOI JUIS BHPIILICHHS
KOMIUIEKCY PiBHSIHb, Ha KUIBKICTh BHKOHaHMX OOYHMCIIOBAJIBHUX omepaiiid. KpiM Toro, koxkeH i3 peajizoBaHHX
MeToliB OyB Hajalli ONTHMI30BaHMH, TUM CaMHM 3MEHIIYIOYHM KiJIbKICTh HEOOXITHMX apU(PMETHYHHX OIeparlii.
PesyabraTu. Li ontuMmizanii Oyiu BUKOHAHI 3 BAKOPUCTAHHSIM MEBHUX BJIACTUBOCTEH MATpUIIl, TAKUX SIK CUMETPis
a00 3HaYHE YHUCIIO HYJHOBHX €JIIEMEHTIB y MaTpuui. Pe3ynbpraTu ananizy npeacrasieHi At noaity 6ainku Ha 5, 50,
100 i 200 By3miB, 1 sIKUX OyB po3paxoBaHuii mporrnH. HaykoBa HoBH3HA. ['0JIOBHIM MOCATHEHHSM JaHOI pOOOTH
€ Te, 0 BOHA ITOKa3y€ BIUTUB BHKOPHCTOBYBAaHOI METOIMKH Ha CKIIAJHICTH BHpPIIICHHS 3am1adi (abo, mo omHe i Te
K, Ha 9ac, HEOOXiTHWH AN OoTpuMaHHsS pe3ynbTariB). IIpakTuyHa 3HAUYMMicTh. Pi3HUIM MK Kpamum (MeHII
CKIIQJIHUM) PIIIEHHAM 3aaadi i TipmmM (OUThII CKIAQAHWM) 3HAXOAUTHCS B POl NEKUTBKOX TOPSAKIB BETUYHHU.
Pe3ynbraT OKa3yioTh, M0 IpH BHOOPI HEMPABUIHPHOTO METOAY MOXKE 3HAYHO 30UIBIINTHCS Yac, HEOOXiTHUN IS
BUKOHAHHS PO3PaxyHKY.

Knrouogi crnosa: MeToN KiHIEBUX eleMeHTiB; po3kiaaanas LU matpuili; XoJenbKuii; BUKIIOUEHHS METOIOM
["aycca; MeTou po3KiIajaHHs; ONTUMI3aLil
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