ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayka Ta nporpec tpancropry. Bicuuk J{HinponeTpoBcbKoro
HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOr0 Tpancnopty, 2021, Ne 3 (93)

TH®OPMALUIHHO-KOMYHIKAIIMHI TEXHOJIOTI TA
MATEMATHUYHE MOJEJIOBAHHSI

UDC 004.4(048.8)

0. 0. ZHEVAHOY

Dep. «Computer and Information Technologies», Dnipro National University of Railway Transport named after Academician
V. Lazaryan, Lazaryana St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 15 35, e-mail marakonec@gmail.com,
ORCID 0000-0003-0019-8320

An Overview of Tools for Collecting Data on Software Development and
Debugging Processes from Integrated Development Environments

Purpose. This paper presents the findings of a review of the literature published in the twenty-first century in
order to identify and analyze the current state of tools that track developer interactions with integrated development
environments, as well as to recommend future research directions based on the actual state. Methodology. By sys-
tematically searching in five digital libraries we conducted a systematic review of the literature on data collection
tools from integrated development environments published in the twenty-first century. Fifty-five papers were select-
ed as primary studies. Findings. 55 articles were analyzed and the findings show that using an integrated develop-
ment environment to collect usage data provides more insight into developer activities than it was previously possi-
ble. Usage data allows us to analyze how developers spend their time. With usage data, you can learn more about
how developers create mental models, investigate code, conduct mini-experiments through trial and error, and what
can help everyone improve performance. The research community continues to be highly active in developing tools
to track developer activity. The findings indicate that more research is needed in this area to better understand and
measure programmer behavior. Originality. For the first time, systematization and analysis of tools for tracking
programmer's behavior in an integrated development environment have been carried out. Practical value. Our study
contributes to a better understanding of the current state of research on programmer behavior in integrated develop-
ment environments. An analysis of the study can help define a research agenda as a starting point for the creation of
a novel practical tool.

Keywords: software development process; debugging; integrated development environment; literature review

Introduction To assist developers in their daily work, you
need to understand developers' activities, especial-
ly how they develop source code. Ideally, this can
be done by observing developers in their actual
work environment.

The majority of developers nowadays work in
an integrated development environment (IDE). The
usage of an IDE simplifies the development pro-
cess. IDEs are popular among software engineers
because they assist them with day-to-day tasks
such as development and maintenance. Instead of
using the version system repository as a data
source, an alternative is to monitor the program-
mer's activities invisibly from the IDE he is using.

Traditionally, improving software development
productivity has been an important challenge in
software engineering. Given the vast differences in
developer productivity, there is significant poten-
tial to improve support for the programming pro-
cess by better understanding how developers ap-
proach software development and the individual
challenges they face.

A software developer's productivity can be
measured by observing and collecting certain types
of events related to the use of the integrated devel-
opment environment.

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2021/242042 © 0. O. Zhevaho, 2021

24

http://creativecommons.org/licenses/by/4.0/

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayxka Ta nporpec Tpancnopty. BicHuk J{HiponeTpoBcbKoro

HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOrO Tpancnopty, 2021, Ne 3 (93)

[HOOPMALIMHO-KOMYHIKALIITHI TEXHOJIOT' I TA MATEMATUYHE MOJIEJTFOBAHHS

By getting information directly from the IDE, you
can record much more detailed events. Researchers
can learn about developer behavior in such IDEs,
which can help them support (or refute) conclu-
sions on developer behavior in various software
engineering tasks and the use of related tools.

Data on how developers use their IDEs provide
extra information into how they produce software.
The IDE's usage of data collection technologies
allows for a more complete understanding of how
developers work than was previously possible. The
most obvious application of usage data is to exam-
ine how developers spend their time in the IDE by
identifying usage log events and tracking the time
between them. We can acquire a better understand-
ing of the developer's time allocation and uncover
ways to save time by analyzing usage data. When
we monitor a programmer's interactions with an
IDE, we can look for patterns in the flow of inter-
actions that indicate that help is needed and pro-
vide it immediately.

Purpose

In this paper, we examine published research
from the twenty-first century to investigate tools
that track developer interactions with integrated
development environments, based on the findings
of a thorough literature review. The purpose of this
research is to determine whatever tools have been

Google Scholar

Initial Search

ACM Digital library

developed in the research community and how
they might be used. We identified research gaps
and proposed future research directions based on
our findings.

Methodology

The recommendations suggested by Kitchenham
[25], which are among the most widely accepted in
software engineering, were adopted to conduct
a systematic literature review.

We used a well-defined procedure in our review,
which included the following steps:

1. Identifying the research questions.

2. Conducting a database search.

3. Study selection.

4. Filtering studies by assessing their relevance.

5. Extraction of data.

6. A summary of the findings.

7. Writing a review report.

Research questions. We established the follow-
ing research questions to determine the study's
scope:

1. How many tools for tracking developer activi-
ties with integrated development environments have
been developed in the twenty-first century?

2. How have researchers used these tools to col-
lect and analyze developer behavior?

The process we use to select relevant articles is
shown in Figure 1.

IEEE Xplore Science Direct Mendeley

Unique

Application of
selection criteria

Snowballing

Fig. 1. Papers selection methodology

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2021/242042

© 0. O. Zhevaho, 2021

25

http://creativecommons.org/licenses/by/4.0/

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayxka Ta nporpec Tpancnopty. BicHuk J{HiponeTpoBcbKoro

HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOrO Tpancnopty, 2021, Ne 3 (93)

[HOOPMALIMHO-KOMYHIKALIITHI TEXHOJIOT' I TA MATEMATUYHE MOJIEJTFOBAHHS

Initial search. We searched five well-known
digital libraries, such as Google Scholar, ACM,
IEEE Xplore, ScienceDirect, and Mendeley. We
chose these databases because they are very large,
which makes this review exhaustive.

Unique. We merged the results from each da-
tabase into a single set and removed duplicates.

Application of selection criteria. This stage
allows us to determine whether the articles we re-
ceive are relevant to our topics. The abstract and
main text of each article is evaluated to ensure that
they fit the inclusion criteria.

The inclusion criteria are:

1. Twenty-first-century research that is relevant
to our research questions and has been published in
journals or conferences.

2.The article is written in English, Russian, or
Ukrainian, and the full text of the article is availa-
ble.

Snowballing. To decide whether to include
a paper in the study, we looked at the list of all ref-
erences and read the whole text of the article. To
prevent overlooking potentially relevant studies,
we employed the «snowballing» method, analyzing
references for each selected study. The snowball-
ing process was carried out in both directions
(backward and forward).

For each chosen paper, data was collected and
analyzed.

Findings

Now we can answer our research questions.

RQ 1. How many tools for tracking developer
activities with IDEs have been developed in the
twenty-first century?

Overall, we found 55 relevant papers, presented
in Table 1.

These papers are all about a tool that keeps
track of a developer's interactions with an integrat-
ed development environment.

The names of journals and conferences are
listed in Table 1, along with the total number of
papers from each source.

The year-by-year distribution of tools invented
in the twenty-first century is depicted in Figure 2.

RQ 2. How have researchers used these tools
to collect and analyze developer behavior?

We divided the selected tools into three groups
that track: coding behavior, debugging behavior,
and collaborative interaction.

Coding behavior. We have identified 44 tools
to help you understand coding behavior [1-4, 7—
12, 14-16, 21-24, 26-28, 30-40, 42-44, 46-48,
50-56].

These are IDE plugins that track and classify
developer activity by listening for events related to
developer behavior. Researchers used these plugins
to determine how much time programmers spent
writing code in the IDE. They were designed to
track developer activity in the IDE by recording
a range of code editing events, keystrokes, and
keyboard shortcuts when building software. They
allow you to replay a programming session using
fine-grained typing logs and have a timeline.

One of the reasons for observing the develop-
ment of algorithms and program texts is to control
independent work.

These tools can also detect manual refactoring,
which is reworking performed by the developer
without the use of an IDE. BeneFactor [14] identi-
fies developers’ manual refactoring and provides
them with reminders to employ automatic refactor-
ing.

As a result, researchers are investigating new
methods for collecting and analyzing data that
might be used to characterize the coding workflow.

According to studies, code completion is one of
the most commonly utilized features in IDEs [35].

These tools are used to evaluate the behavior of

novice programmers in introductory programming
classes [37]. Recorded transaction history contains
not only information about edits, which shows how
each source file was changed, but also the devel-
oper's interaction with the IDE (i.e., tool usage).
The data also includes timestamps, which can be
used to estimate how much time was spent on
a specific task. The cornerstone for boosting
hands-on learning and lowering time wasted in the
software development process is monitoring de-
velopment style approaches.
These tools make it possible to create systems that
automatically monitor and evaluate the coding pro-
cess, as well as provide adaptive feedback and
programming skill assessments.

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2021/242042

26

© 0. O. Zhevaho, 2021

http://creativecommons.org/licenses/by/4.0/

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayka Ta nporpec tpancropry. Bicuuk J{HinponeTpoBcbKoro
HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOrO Tpancnopty, 2021, Ne 3 (93)

[HOOPMALIMHO-KOMYHIKALIITHI TEXHOJIOT' I TA MATEMATHUYHE MOJIEJTFOBAHHS

O Hackystat PROM

Watcher

PSPA Xiaohong Yuan et al.

ElectroCodeoGram InteractionHistoryDB | Mylar Monitor (Mylyn)

ChEOPS Eclipseye FASTDash Jasmine Jazz Reverb Lijie Zou et al.

ClockIt CollabVs OperationRecorder SpyWare Team Weaver
HeatMaps

James Saros Syde

Fluorite

BeneFactor ChEOPSJ CodingTracker CoExist IDE++ plog WitchDoctor

DFlow Epicea Test My Code Yoshiaki Matsuzawa et al.

Blaze OSBIDE PerConlIK

ActivitySpace || WatchDog Gabor Antal et al.

00000000000000

TaskTracker-tool Jodo Caldeira et al.

Kostadin Damevski et al. FeedBaG Swarm Debug Infrastructure
FeedBaG++
2018 iTrace Rabbit ‘WatchDog 2.0 ChangeMacroRecorder
@ Shynkarenko et al.
@ Debug Event Tracker InSession
o

Fig. 2. Tools developed in twenty-first century per year

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2021/242042 © 0. O. Zhevaho, 2021

27

http://creativecommons.org/licenses/by/4.0/

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayka Ta nporpec tpancropry. Bicuuk J{HinponeTpoBcbKoro
HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOrO Tpancnopty, 2021, Ne 3 (93)

[HOOPMALIMHO-KOMYHIKALIITHI TEXHOJIOT' I TA MATEMATUYHE MOJIEJTFOBAHHS

Journals and conferences of the selected papers

Table 1

Source Venue Total Referred papers
Program Comprehension Conference 4 [1, 27, 40, 44]
Applied Informatics Conference 1 [2]
Automated Software Engineering Conference 3 [3,19, 32]
Foundations of Software Engineering Conference 1 [4]
Software Engineering Conference 9 [5, 12, 14, 18, 24,
38, 43, 45, 52]
Human Factors in Computing Systems Conference 1 [6]
Current Trends in Theory and Practice of Informatics Conference 1 [7]
arXiv Journal 1 [8]
IEEE Transactions on Software Engineering Journal 1 [9]
Smalltalk Technologies Conference 1 [10]
Dynamic languages Conference 1 [11]
IEEE Software Journal 3 [13, 22, 35]
Systems, Programming, and Applications: Software for Humanity Conference 2 [15, 20]
Eye Tracking Research and Applications Conference 1 [16]
Software Maintenance Conference 1 [17]
Advanced Information Systems Engineering Conference 1 [21]
Ethnographies of Code Conference 1 [23]
Recommendation Systems for Software Engineering Conference 1 [26]
Computer Science Education Conference 1 [28]
Practical Aspects of Knowledge Management Conference 1 [29]
Software Analysis, Evolution and Reengineering Conference 2 [30, 42]
Innovation and Technology in Computer Science Education Conference 1 [31]
Eclipse Technology Exchange Conference 1 [33]
Visualizing Software for Understanding and Analysis Conference 1 [34]
Object-Oriented Programming Conference 1 [36]
Special Interest Group on Computer Science Education Conference 2 [37, 54]
International Journal of Technology Enhanced Learning Journal 1 [39]
Software Quality, Reliability and Security Conference 1 [41]
University of Lugano Thesis 1 [46]
Software Process Conference 1 [47]

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2021/242042

28

© 0. O. Zhevaho, 2021

http://creativecommons.org/licenses/by/4.0/

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayxka Ta nporpec Tpancnopty. BicHuk J{HiponeTpoBcbKoro

HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOrO Tpancnopty, 2021, Ne 3 (93)

[HOOPMALIMHO-KOMYHIKALIITHI TEXHOJIOT' I TA MATEMATUYHE MOJIEJTFOBAHHS

Continuation of Table 1

Journals and conferences of the selected papers

Source Venue Total Referred papers
Computer Sciences and Information Technologies Conference 2 [48, 49]
Instrumentation Technology Conference Conference 1 [50]
Asia-Pacific Software Engineering Conference Conference 1 [51]
Software Maintenance and Reengineering Conference 1 [53]
Evaluation and Usability of Programming Languages and Tools Conference 1 [55]
Software Engineering Research and Practice Journal 1 [56]

Debugging behavior. We have identified
5 tools to help you understand debugging behavior
[5,9, 35,41, 49].

Debugging is an unavoidable aspect of almost
all software development projects, and it is usually
more difficult and time-consuming than expected.
These tools collect information on debugging in
the IDE debugging infrastructure, how program-
mers debug, and what debugging tools and ap-
proaches are available. They help researchers col-
lect and share data on interactive debugging at-
tempts by developers [41]. Using their previous
debugging sessions' knowledge, developers can go
through call method sequences and find appropri-
ate breakpoints.

Researchers can use such tools to uncover use
patterns and smells that help them better under-
stand how usable development environments are
for debugging.

Breakpoints and step-by-step code examination
are the most often used debugging functions, while
sophisticated debugging options in IDEs are un-
derutilized [5]. Developers often avoid complex
debugger functions such as breakpoints, and prefer
simpler debugging techniques such as «printf de-
bugging». Even when more efficient commands
are available, users tend to utilize only a few de-
bugging commands [9].

Programmers spend the majority of their time
reading and interpreting source code, according to
the research. They believe that running the applica-
tion with a debugger numerous times is the most
effective way to comprehend the code. This sup-
ports the hypothesis that debugging is used to both
understand the source code and find bugs.

By examining how developers use IDEs, it is
possible to uncover patterns of programmer behav-
ior during debugging and identify the issues they
face.

Collaborative interaction. We have identified
8 tools to help you understand collaborative inter-
action [6, 13, 17-20, 29, 45].

These tools make it easier for team members to
keep track of each other's work and give them fast
access to important information for group commu-
nication. They provide details about the files that
other members of the team are working on and
changing. Such information includes which code
files are being modified, who is modifying them,
and how they are being used.

The developer can use such a tool to see which
team members are looking at which files, methods,
and classes are now being changed.

These tools integrate collaboration features like
text and VolP chat to the programming environ-
ment. It displays which people are online as well as
whether or not they are editing or debugging.

These tools are extensible, which means that
they can be enhanced and integrated into other sys-
tems.

The key challenge these technologies confront
is finding a balance between giving essential in-
formation about team members' actions while not
overburdening developers with useless data.

Recommendations. The majority of research
have created their own artifacts for designing and
performing experiments that are not publicly avail-
able. As a result, they cannot be used to reproduce
investigations or run new experiments. As a result,
researchers should make their data available to
other researchers who want to replicate their find-

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2021/242042

© 0. O. Zhevaho, 2021

29

http://creativecommons.org/licenses/by/4.0/

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayxka Ta nporpec Tpancnopty. BicHuk J{HiponeTpoBcbKoro

HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOrO Tpancnopty, 2021, Ne 3 (93)

[HOOPMALIMHO-KOMYHIKALIITHI TEXHOJIOT' I TA MATEMATUYHE MOJIEJTFOBAHHS

ings, while accurately disclosing the criteria and
elements they used to design and execute the in-
vestigations.

Usage data can be useful, but developers may
have some concerns about the privacy of the data
being collected and to whom the data is shared.
These worries emerge mostly because the infor-
mation gathered could disclose specific developers
or portions of the source code that organizations
are developing.

Steps such as encryption of critical pieces of in-
formation can be implemented to reduce worries
about the confidentiality of obtained data. Devel-
oper names, window headers, file names, and
source code identifiers, for example, might be
hashed to obfuscate the data and limit the danger
of acquiring information identifying the developer
or the projects and code they are working on.

Originality and practical value

The tools for tracking programmer activity in
an integrated development environment were sys-
tematized and studied for the first time.

This systematic literature review complements
existing research on tools that track developer in-
teractions with the integrated development envi-
ronment in three ways:

1. An examination and demonstration of all
twenty-first-century tools.

2. A summary of tool development issues that
have been resolved.

3.Making recommendations for future re-
search.

We believe that conducting this systematic lit-
erature review at this time is crucial because it
brings together all of the past research and can help
researchers avoid misusing IDE use tracking tech-
nology in software engineering research.

As a result, it can serve as a starting point for
future research into programmer behavior in an
integrated development environment.

Conclusions

We conducted a systematic literature review to
determine the current state of tools that track de-
veloper interactions with integrated development
environments. We found 55 papers that were relat-
ed to the creation of a tool for tracking developer
engagement in IDEs. We also provided advise to
the software development community and a list of
ideas for academics interested in developing a tool
to track developer activity.

Our findings contribute to a better understand-
ing of where programming behavior research in
integrated development environments stands right
now. An examination of the research findings can
assist in the development of a research agenda,
which can subsequently be used to create a new
practical tool.

The research community continues to be highly
active in developing methods to track developer
activity. Further research in this area is needed to
better understand and evaluate programmer behav-
ior, according to the findings.

LIST OF REFERENCE LINKS

1. Amann S, Proksch S., Nadi S. FeedBaG : An interaction tracker for Visual Studio. 2016 IEEE 24th Interna-
tional Conference on Program Comprehension (ICPC) (Austin, 16-17 May 2016). Austin, 2016. P. 1-3.
DOI: http://doi.org/10.1109/icpc.2016.7503741

2. Antal G, Végh A. Z., Bilicki V. A methodology for measuring software development productivity using
Eclipse IDE. Proceedings of the 9th International Conference on Applied Informatics (Eger, Jan. 29-Feb. 1
2014). Eger, 2014. Vol. 2. P. 255-262. DOI: http://doi.org/10.14794/icai.9.2014.2.255

3. Baol. YeD. Xing Z., Xia X., Wang X. ActivitySpace : A Remembrance Framework to Support Interappli-
cation Information Needs. 2015 30th IEEE/ACM International Conference on Automated Software Engineer-
ing (ASE) (Lincoln, 9-13 Nov. 2015). Lincoln, 2015. P. 864-869. DOI: http://doi.org/10.1109/ase.2015.90

4. Beller M., Gousios G., Panichella A., Zaidman A. When, how, and why developers (do not) test in their IDEs.
Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering (August 2015). 2015.

P. 179-190. DOI: http://doi.org/10.1145/2786805.2786843

5. Beller M., Spruit N., Spinellis D., Zaidman A. On the dichotomy of debugging behavior among programmers.
Proceedings of the 40th International Conference on Software Engineering (May 2018). 2018. P. 572-583.
DOI: http://doi.org/10.1145/3180155.3180175

Creative Commons Attribution 4.0 International

doi: https://doi.org/10.15802/stp2021/242042 © 0. O. Zhevaho, 2021

30

http://creativecommons.org/licenses/by/4.0/

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayka Ta nporpec tpancropry. Bicuuk J{HinponeTpoBcbKoro
HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOrO Tpancnopty, 2021, Ne 3 (93)

[HOOPMALIMHO-KOMYHIKALIITHI TEXHOJIOT' I TA MATEMATUYHE MOJIEJTFOBAHHS

6.

10.

11.

12.

13.

14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

Biehl J. T., Czerwinski M., Smith G. Robertson G. G. FASTDash : a visual dashboard for fostering awareness
in software teams. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (April
2007). 2007. P. 1313-1322. DOI: http://doi.org/10.1145/1240624.1240823

Bielikova M., Polasek 1., Barla M., Kuric E., Rasto¢ny K., Tvarozek J., Lacko P. Platform Independent Soft-
ware Development Monitoring : Design of an Architecture. SOFSEM 2014 : Theory and Practice of Computer
Science. 2014. Vol. 8327. P. 126-137. DOI: http://doi.org/10.1007/978-3-319-04298-5_12

Caldeira J., Brito e Abreu F., Cardoso J., Ribeiro R., Werner C. Profiling Software Developers with Process
Mining and N-Gram Language Models. Arxiv. 2021. URL: http://arxiv.org/abs/2101.06733v1

Damevski K., Shepherd D. C., Schneider J., Pollock L. Mining Sequences of Developer Interactions in Visual
Studio for Usage Smells. IEEE Transactions on Software Engineering (1 Apr. 2017). 2017. Vol. 43. Iss. 4.

P. 359-371. DOI: http://doi.org/10.1109/tse.2016.2592905

Dias M., Cassou D., Ducasse S. Representing code history with development environment events.

IWST-2013 — 5th International Workshop on Smalltalk Technologies. 2013. P. 1-7.

Ebraert P., Vallejos J., Costanza P., Van Paesschen E., D'Hondt T. Change-oriented software engineering.
Proceedings of the 2007 international conference on Dynamic languages : in conjunction with the 15th Inter-
national Smalltalk Joint Conference 2007 (August 2007). 2007. P. 3-24.

DOI: http://doi.org/10.1145/1352678.1352680

Foster S. R., Griswold W. G., Lerner S. WitchDoctor : IDE support for real-time auto-completion of refactor-
rings. 2012 34th International Conference on Software Engineering (ICSE) (Zurich, 2-9 June 2012). Zurich,
2012. P. 222-232. DOI: http://doi.org/10.1109/icse.2012.6227191

Frost R. Jazz and the Eclipse Way of Collaboration. IEEE Software (Nov.-Dec. 2007). 2007. Vol. 24. Iss. 6.
P. 114-117. DOI: http://doi.org/10.1109/ms.2007.170

Ge X., DuBose Q. L., Murphy-Hill E. Reconciling manual and automatic refactoring. 2012 34th International
Conference on Software Engineering (ICSE) (Zurich, 2-9 June 2012). Zurich, 2012, P. 211-221.

DOI: http://doi.org/10.1109/icse.2012.6227192

Gu Z., Schleck D., Barr E. T., Su Z. Capturing and Exploiting IDE Interactions. Proceedings of the 2014 ACM
International Symposium on New Ideas, New Paradigms, and Reflections on Programming & Software
(October 2014). 2014. P. 83-94. DOI: http://doi.org/10.1145/2661136.2661144

Guarnera D. T., Bryant C. A., Mishra A., Maletic J. ., Sharif B. iTrace : Eye tracking infrastructure for devel-
opment environments. Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications
(June 2018). 2018. Ne 105. P. 1-3. DOI: http://doi.org/10.1145/3204493.3208343

Guzzi A., Pinzger M., van Deursen A. Combining micro-blogging and IDE interactions to support developers
in their quests. 2010 IEEE International Conference on Software Maintenance (Timisoara, 12-18 Sept. 2010).
Timisoara, 2010. P. 1-5. DOI: http://doi.org/10.1109/icsm.2010.5609683

Hattori L., Lanza M. Syde : a tool for collaborative software development. Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering (May 2010). 2010. Vol. 2. P. 235-238.

DOI: http://doi.org/10.1145/1810295.1810339

Hegde R., Dewan P. Connecting Programming Environments to Support Ad-Hoc Collaboration. 2008 23rd
IEEE/ACM International Conference on Automated Software Engineering (L'Aquila, 15-19 Sept. 2008).
L'Aquila, 2008. P. 178-187. DOI: http://doi.org/10.1109/ase.2008.28

Hundhausen C. D., Carter A. S. Supporting Social Interactions and Awareness in Educational Programming
Environments. Proceedings of the 5th Workshop on Evaluation and Usability of Programming Languages and
Tools (October 2014). 2014. P. 55-56. DOI: http://doi.org/10.1145/2688204.2688215

loannou C., Burattin A., Weber B. Mining Developers’ Workflows from IDE Usage. Advanced Information
Systems Engineering Workshops. 2018. Vol. 316. P. 167-179.

DOI: http://doi.org/10.1007/978-3-319-92898-2_14

Jaspan C., Jorde M., Egelman C., Green C., Holtz B., Smith E., Hodges M., Knight A., Kammer L., Dicker J.,
Sadowski C., Lin J., Cheng L., Canning M., Murphy-Hill E. Enabling the Study of Software Development
Behavior With Cross-Tool Logs. IEEE Software (Nov.-Dec. 2020). 2020. Vol. 37. Iss. 6. P. 44-51.

DOI: http://doi.org/10.1109/ms.2020.3014573

Jekutsch S. ElectroCodeoGram : An Environment for Studying Programming.

URL.: http://www.mi.fu-berlin.de/wiki/pub/SE/ElectroCodeoGram/lancaster.pdf

Johnson P. M., Hongbing K., Agustin J., Chan C., Moore C., Miglani J., Shenyan Zh., Doane W. E. J. Beyond
the Personal Software Process : Metrics collection and analysis for the differently disciplined. 25th Interna-

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2021/242042 © 0. O. Zhevaho, 2021

31

http://creativecommons.org/licenses/by/4.0/

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayka Ta nporpec tpancropry. Bicuuk J{HinponeTpoBcbKoro
HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOrO Tpancnopty, 2021, Ne 3 (93)

[HOOPMALIMHO-KOMYHIKALIITHI TEXHOJIOT' I TA MATEMATUYHE MOJIEJTFOBAHHS

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42,

tional Conference on Software Engineering, 2003. Proceedings (Portland, 3-10 May 2003). Portland, 2003.

P. 641-646. DOI: http://doi.org/10.1109/icse.2003.1201249

Kitchenham B. A., Charters S. Guidelines for performing Systematic Literature Reviews in Software Engineer-
ing. URL.: https://userpages.uni-koblenz.de/~laemmel/esecourse/slides/slr.pdf

Kobayashi T., Kato N., Agusa K. Interaction histories mining for software change guide. 2012 Third Interna-
tional Workshop on Recommendation Systems for Software Engineering (RSSE) (Zurich, 4 June 2012). Zurich,
2012. P. 73-77. DOI: http://doi.org/10.1109/rsse.2012.6233415

Lijie Z., Godfrey M. W., Hassan A. E. Detecting Interaction Coupling from Task Interaction Histories. 15th
IEEE International Conference on Program Comprehension (ICPC '07) (Banff, 26-29 June 2007). Banff,
2007. P. 135-144. DOI: http://doi.org/10.1109/icpc.2007.18

Lyulina E., Birillo A., Kovalenko V., Bryksin T. TaskTracker-tool : A Toolkit for Tracking of Code Snapshots
and Activity Data During Solution of Programming Tasks. Proceedings of the 52nd ACM Technical Symposi-
um on Computer Science Education (March 2021). 2021. P. 495-501.

DOI: http://doi.org/10.1145/3408877.3432534

Maalej W., Happel H.-J. A Lightweight Approach for Knowledge Sharing in Distributed Software Teams.
Practical Aspects of Knowledge Management. VVol. 5345. P. 14-25.

DOI: http://doi.org/10.1007/978-3-540-89447-6_4

Maruyama K., Hayashi S., Omori T. ChangeMacroRecorder : Recording fine-grained textual changes of
source code. 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reengineering
(SANER) (Campobasso, 20-23 March 2018). Campobasso, 2018. P. 537-541.

DOI: http://doi.org/10.1109/saner.2018.8330255

Matsuzawa Y., Okada K., Sakai S. Programming process visualizer : A proposal of the tool for students to
observe their programming process. Proceedings of the 18th ACM conference on Innovation and technology in
computer science education (July 2013). 2013. P. 46-51. DOI: http://doi.org/10.1145/2462476.2462493
Mcintyre M. M., Walker R. J. Assisting potentially-repetitive small-scale changes via semi-automated heuris-
tic search. Proceedings of the twenty-second IEEE/ACM international conference on Automated software en-
gineering (November 2007). 2007. P. 497-500. DOI: http://doi.org/10.1145/1321631.1321718

McKeogh J., Exton C. Eclipse plug-in to monitor the programmer behaviour. Proceedings of the 2004
OOPSLA workshop on eclipse technology eXchange (October 2004). 2004. P. 93-97.

DOI: http://doi.org/10.1145/1066129.1066148

Minelli R., Lanza M. Visualizing the workflow of developers. 2013 First IEEE Working Conference on
Software Visualization (VISSOFT) (Eindhoven, 27-28 Sept. 2013). Eindhoven, 2013. P. 1-4.

DOI: http://doi.org/10.1109/vissoft.2013.6650531

Murphy G. C., Kersten M., Findlater L. How are Java software developers using the Eclipse IDE? IEEE Soft-
ware (July-Aug. 2006). 2006. Vol. 23. Iss. 4. P. 76-83. DOI: http://doi.org/10.1109/ms.2006.105

Negara S., Vakilian M., Chen N., Johnson R. E., Dig D. Is It Dangerous to Use Version Control Histories to
Study Source Code Evolution? ECOOP 2012 — Object-Oriented Programming. Berlin, 2012. Vol. 7313.

P. 79-103. DOI: http://doi.org/10.1007/978-3-642-31057-7_5

Norris C., Barry F., Fenwick Jr. J. B., Reid K., Rountree J. Clocklt : collecting quantitative data on how begin-
ning software developers really work. ACM SIGCSE Bulletin. 2008. Vol. 40. Iss. 3. P. 37-41.

DOI: http://doi.org/10.1145/1597849.1384284

Omori T., Maruyama K. A change-aware development environment by recording editing operations of source
code. Proceedings of the 2008 international working conference on Mining software repositories (May 2008).
2008. P. 31-34. DOI: http://doi.org/10.1145/1370750.1370758

Partel M., Luukkainen M., Vihavainen A., Vikberg T. Test My Code. International Journal of Technology
Enhanced Learning (IJTEL). 2013. Vol. 5, Ne 3/4. P. 271. DOI: http://doi.org/10.1504/ijtel.2013.059495
Parnin C., Gorg C. Building Usage Contexts During Program Comprehension. 14th IEEE International Con-
ference on Program Comprehension (ICPC'06) (Athens, 14-16 June 2006). Athens, 2006. P. 13-22.

DOI: http://doi.org/10.1109/icpc.2006.14

Petrillo F., Soh Z., Khomh F., Pimenta M., Freitas C., Gueheneuc Y.-G. Towards Understanding Interactive
Debugging. 2016 IEEE International Conference on Software Quality, Reliability and Security (QRS) (Vienna,
1-3 Aug. 2016). Vienna, 2016. P. 152-163. DOI: http://doi.org/10.1109/grs.2016.27

Proksch S., Nadi S., Amann S., Mezini M. Enriching in-IDE process information with fine-grained source
code history. 2017 IEEE 24th International Conference on Software Analysis, Evolution and Reengineering

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2021/242042 © 0. O. Zhevaho, 2021

32

http://creativecommons.org/licenses/by/4.0/

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayka Ta nporpec tpancropry. Bicuuk J{HinponeTpoBcbKoro
HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOrO Tpancnopty, 2021, Ne 3 (93)

[HOOPMALIMHO-KOMYHIKALIITHI TEXHOJIOT' I TA MATEMATUYHE MOJIEJTFOBAHHS

43.

44,

45.

46.

47.

48.

49,

50.

51.

52.

53.

54.

55.

56.

(SANER) (Klagenfurt, 20-24 Feb. 2017). Klagenfurt, 2017. P. 250-260.

DOI: http://doi.org/10.1109/saner.2017.7884626

Robbes R., Lanza, M. SpyWare : a change-aware development toolset. Proceedings of the 30th international
conference on Software engineering (May 2008). 2008. P. 847-850.

DOI: http://doi.org/10.1145/1368088.1368219

Rothlisberger D., Nierstrasz O., Ducasse S., Pollet D., Robbes R. Supporting task-oriented navigation in IDEs
with configurable HeatMaps. 2009 IEEE 17th International Conference on Program Comprehension (Van-
couver, 17-19 May 2009). Vancouver, 2009. P. 253-257. DOI: http://doi.org/10.1109/icpc.2009.5090052
Salinger S., Oezbek C., Beecher K., Schenk J. Saros : an eclipse plug-in for distributed party programming.
Proceedings of the 2010 ICSE Workshop on Cooperative and Human Aspects of Software Engineering (May
2010). 2010. P. 48-55. DOI: http://doi.org/10.1145/1833310.1833319

Shron Y. EclipsEye Spying onEclipse.

URL.: http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=064DEOD8481B3C9FD39F875EA79ADS59C?
doi=10.1.1.709.9455&rep=repl&type=pdf

Shin H., Choi H.-J., Baik J. Jasmine : A PSP Supporting Tool. Software Process Dynamics and Agility. 2007.
Vol. 4470. P. 73-83. DOI: http://doi.org/10.1007/978-3-540-72426-1_7

Shynkarenko V., Zhevago, O. Visualization of program development process. 2019 IEEE 14th International
Conference on Computer Sciences and Information Technologies (CSIT) (Lviv, 17-20 Sept. 2019). Lviv, 2019.
P. 142-145. DOI: http://doi.org/10.1109/stc-csit.2019.8929774

Shynkarenko V., Zhevaho O. Development of a toolkit for analyzing software debugging processes using the
constructive approach. Eastern-european Journal of Enterprise Technologies. 2020. Vol. 5. Iss. 2 (107).

P. 29-38. DOI: http://doi.org/10.15587/1729-4061.2020.215090

Sillitti J., Succi, Vernazza. Collecting, integrating and analyzing software metrics and personal software pro-
cess data. 2003 Proceedings 29th Euromicro Conference (Belek-Antalya, 1-6 Sept. 2003). Belek-Antalya,
2003. P. 336-342. DOI: http://doi.org/10.1109/eurmic.2003.1231611

Sison R. Personal software process (PSP) assistant. 12th Asia-Pacific Software Engineering Conference
(APSEC'05) (Taipei, 15-17 Dec. 2005). Taipei, 2005. P. 8. DOI: http://doi.org/10.1109/apsec.2005.87

Snipes W., Nair A. R., Murphy-Hill E. Experiences gamifying developer adoption of practices and tools.
Companion Proceedings of the 36th International Conference on Software Engineering (May 2014). 2014.

P. 105-114. DOI: http://doi.org/10.1145/2591062.2591171

Soetens Q. D., Demeyer S. ChEOPSJ : Change-Based Test Optimization. 2012 16th European Conference on
Software Maintenance and Reengineering (Szeged, 27-30 March 2012). Szeged, 2012. P. 535-538.

DOI: http://doi.org/10.1109/csmr.2012.70

Steinert B., Cassou D., Hirschfeld R. CoExist : Overcoming Aversion to Change Preserving Immediate Access
to Source Code and Run-time Information of Previous Development States. ACM SIGPLAN Notices. 2013.
Vol. 48. Iss. 2. P. 107-118. DOI: http://doi.org/10.1145/2480360.2384591

Yoon Y., Myers B. A. Capturing and analyzing low-level events from the code editor. Proceedings of the 3rd
ACM SIGPLAN workshop on Evaluation and usability of programming languages and tools (October 2011).
2011. P. 25-30. DOI: http://doi.org/10.1145/2089155.2089163

Yuan X., Vega P., Yu H., Li Y. A Personal Software Process Tool for Eclipse Environment. 2005.

URL.: http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1638&rep=repl&type=pdf

0. 0. XEBATOY

MKag. «Komm’otepHi indopMariiini Texnouorii», JIHinpoBChKUii HalliOHATBLHUN YHIBEPCUTET 3ali3HUYHOTO TPAHCIIOPTY
iMeHi akagemika B. JlazapsHa, Byn. Jlazapsina, 2, [lninpo, Ykpaiuna, 49010, ten. +38 (056) 373 15 35,
e mommra marakonec@gmail.com, ORCID 0000-0003-0019-8320

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2021/242042 © 0. O. Zhevaho, 2021

33

http://creativecommons.org/licenses/by/4.0/

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayka Ta nporpec tpancropry. Bicuuk J{HinponeTpoBcbKoro
HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOrO Tpancnopty, 2021, Ne 3 (93)

[HOOPMALIMHO-KOMYHIKALIITHI TEXHOJIOT' I TA MATEMATUYHE MOJIEJTFOBAHHS

Orasig iHCTpyMEHTIB 300py JaHUX PO NPOLECH PO3POOKH TAa HAJIATOAKEHHS
NMPOrpPaMHOro 3a0e3ne4eHHs 3 IHTErpOBaHUX cepeJOBHIL PO3POOKHU

Mera. Y wiii crarTi nependadeHo IMPOBECTH OIS JIITEpaTypH, OIMyOIiKOBAaHOI Yy ABAUATH MEPIIOMY CTOJITTI,
i3 METOI0 BHABJICHHS Ta aHANi3y NMOTOYHOTO CTaHy iHCTPYMEHTIB, SIKi BiJCJiJKOBYIOTh B3a€EMOII0 PO3POOHHUKIB
3 IHTErpPOBaHMUMH CEPEIOBHUIAMH PO3POOKH, a TAKOK HAaJATH PEKOMEHAALII IS MOAaIbIINX JOCITIKEHb Ha OCHOBI
motouHoro crany. Meroauka. [IIIsIxoM CHCTEMAaTHYHOTO TMOMIYKY B I'SITH €NEKTPOHHUX 0i10Ti0TeKax MU IPOBEIH
JeTaTbHUN OTIIAM JITepaTypy OI0A0 IHCTPYMEHTIB 300py JaHWX 3 iHTETPOBaHUX cepenoBUII po3podku. Bymo Bimid-
paso 55 incTpymeHTiB. Pe3yabTaTn. AHaNi3 OTPUMAaHUX IHCTPYMEHTIB IIOKa3ye, M0 BUKOPUCTAHHS iHTETPOBAHOTO
cepeioBHIIa po3poOKH It 300py AaHUX JIO3BOJISIE Kpalle 3p0o3yMITH il po3pOoOHHMKIB, HIX 1€ OyJI0O MOXIIMBO pa-
Hime. /lani i3 cepeaoBHI pO3pOOKH JTO3BOJIIIOTH HAM aHANI3yBaTH, K PO3POOHHMKH MPOBOASATH CBIM Yac, Ai3HATHCS
OijbLIe PO Te, IK BOHH CTBOPIOIOTH MEHTAJIbHI MOAENI, JOCIIKYIOTh KOJI, IIPOBOJISITH MiHI €KCIIEpUMEHTH, pOOIIs-
YM CrIpoOu W JIOMyCKalo4M IOMMJIKH, a TAKOXK 3’CYBaTH, 1[0 MOXKE JIOMIOMOI'TH KOKHOMY IiIBUIIUTH NPOJYKTHB-
HicTb. JloCHiHUIIEKE TOBAPUCTBO MPOJOBKYE PO3POOJISTH IHCTPYMEHTH AJIsl BIICHIAKYBAaHHS aKTHMBHOCTI po3po0-
HukiB. OTpUMaHi JaHi CBi4aTh, IO B Iii ragy3i HEOOXIJHI TOJATKOBI TOCIIIHKECHHS, 00 Kpalie 3p03yMiTH OBe-
niHKy nporpaMictiB. HaykoBa HOBH3HA. YIiepiie MpoOBEACHO CHCTEMATH3AIlI0 Ta aHAN3 iIHCTPYMEHTIB BIACIIAKY-
BaHHS TIOBEIIHKM TIPOTPaMicTa B IHTErpoBaHOMY cepenoBumli po3poOku. IlpakTmyHa 3HaummicTb. OTpuMmani
pe3yIbTaTh CIPHAIOTH KPalOMy PO3YMiHHIO IIOTOYHOTO CTaHY JOCIIPKeHb MOBEIIHKH MPOTPaMiCTiB B iHTETpoBa-
HHUX CEepeIOBHINAX PO3POOKH Ta MOXKYTh JOINOMOITH BU3HAYMTH IUIAH SIK BIANPABHY TOYKY Ul CTBOPCHHS HOBOT'O
NPaKTUYHOTO IHCTPYMEHTY.

Knrouosi cnosa: nponec po3poOKU IPOrpaMHOro 3a0e3IeUeHHs; HaJlaroUKCHHS; iHTErpOBaHe CEPEIOBHILE PO3-
pOOKH; OTJIsiA JIiTepaTypu

REFERENCES

1. Amann, S., Proksch, S., & Nadi, S. (2016). FeedBaG: An interaction tracker for Visual Studio. In 2016 IEEE
24th International Conference on Program Comprehension (ICPC) (pp. 1-3). Austin, USA.
DOI: http://doi.org/10.1109/icpc.2016.7503741 (in English)

2. Antal, G., Végh, A. Z., & Bilicki, V. (2014). A methodology for measuring software development productivity
using Eclipse IDE. In Proceedings of the 9th International Conference on Applied Informatics (Vol. 2, pp.
252-262). Eger, Hungary. DOI: http://doi.org/10.14794/icai.9.2014.2.255 (in English)

3. Bao, L., Ye, D, Xing, Z., Xia, X., & Wang, X. (2015). ActivitySpace: A Remembrance Framework to Support
Interapplication Information Needs. In 2015 30th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE) (pp. 864-869). Lincoln, USA. DOI: http://doi.org/10.1109/ase.2015.90
(in English)

4. Beller, M., Gousios, G., Panichella, A., & Zaidman, A. (2015). When, how, and why developers (do not) test in
their IDEs. In Proceedings of the 2015 10th Joint Meeting on Foundations of Software Engineering
(pp. 179-190). DOI: http://doi.org/10.1145/2786805.2786843 (in English)

5. Beller, M., Spruit, N., Spinellis, D., & Zaidman, A. (2018). On the dichotomy of debugging behavior among
programmers. In Proceedings of the 40th International Conference on Software Engineering (pp. 572-583).
DOI: http://doi.org/10.1145/3180155.3180175 (in English)

6. Biehl, J. T., Czerwinski, M., Smith, G., & Robertson, G. G. (2007). FASTDash: a visual dashboard for fostering
awareness in software teams. In Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems (pp. 1313-1322). DOI: http://doi.org/10.1145/1240624.1240823 (in English)

7. Bielikova, M., Polasek, 1., Barla, M., Kuric, E., Rasto¢ny, K., Tvarozek, J., & Lacko, P. (2014). Platform Inde-
pendent Software Development Monitoring: Design of an Architecture. In SOFSEM 2014: Theory and
Practice of Computer Science (Vol. 8327, pp. 126-137).

DOI: http://doi.org/10.1007/978-3-319-04298-5 12 (in English)

8. Caldeira, J., Brito e Abreu, F., Cardoso, J., Ribeiro, R., & Werner, C. (2021). Profiling Software Developers with
Process Mining and N-Gram Language Models. Arxiv.

Retrieved from http://arxiv.org/abs/2101.06733v1 (in English)

9. Damevski, K., Shepherd, D. C., Schneider, J., & Pollock, L. (2017). Mining Sequences of Developer Interactions
in Visual Studio for Usage Smells. IEEE Transactions on Software Engineering (Vol. 43, Iss. 4,

P. 359-371). DOI: http://doi.org/10.1109/tse.2016.2592905 (in English)

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2021/242042 © 0. O. Zhevaho, 2021

34

http://creativecommons.org/licenses/by/4.0/

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayka Ta nporpec tpancropry. Bicuuk J{HinponeTpoBcbKoro
HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOrO Tpancnopty, 2021, Ne 3 (93)

[HOOPMALIMHO-KOMYHIKALIITHI TEXHOJIOT' I TA MATEMATUYHE MOJIEJTFOBAHHS

10. Dias, M., Cassou, D., & Ducasse, S. (2013). Representing code history with development environment events.
IWST-2013 - 5th International Workshop on Smalltalk Technologies, 1-7. (in English)

11.Ebraert, P., Vallejos, J., Costanza, P., Van Paesschen, E., & D'Hondt, T. (2007). Change-oriented software engi-
neering. In Proceedings of the 2007 international conference on Dynamic languages: in conjunction with
the 15th International Smalltalk Joint Conference 2007 (pp. 3-24).

DOIL: http://doi.org/10.1145/1352678.1352680 (in English)

12. Foster, S. R., Griswold, W. G., & Lerner, S. (2012). WitchDoctor: IDE support for real-time auto-completion of
refactorings. In 2012 34th International Conference on Software Engineering (ICSE)

(pp. 22-232). Zurich, Switzerland. DOI: http://doi.org/10.1109/icse.2012.6227191 (in English)

13. Frost, R. (2007). Jazz and the Eclipse Way of Collaboration. In IEEE Software (Vol. 24, Iss. 6, pp.
114-117). DOI: http://doi.org/10.1109/ms.2007.170 (in English)

14.Ge, X., DuBose, Q. L., & Murphy-Hill, E. (2012). Reconciling manual and automatic refactoring. In 2012 34th
International Conference on Software Engineering (ICSE) (pp. 211-221). Zurich, Switzerland.

DOI: http://doi.org/10.1109/icse.2012.6227192 (in English)

15.Gu, Z., Schleck, D., Barr, E. T., & Su, Z. (2012). Capturing and Exploiting IDE Interactions. In Proceedings of
the 2014 ACM International Symposium on New Ideas, New Paradigms, and Reflections on Programming
& Software (pp. 83-94). DOI: http://doi.org/10.1145/2661136.2661144 (in English)

16. Guarnera, D. T., Bryant, C. A., Mishra, A., Maletic, J. I., & Sharif, B. (2018). iTrace: Eye tracking infrastructure
for development environments. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research &
Applications (No 105, pp. 1-3). DOI: http://doi.org/10.1145/3204493.3208343 (in English)

17.Guzzi, A., Pinzger, M., & van Deursen, A. (2010). Combining micro-blogging and IDE interactions to support
developers in their quests. In 2010 IEEE International Conference on Software Maintenance (pp. 1-5).
Timisoara, Romania. DOI: http://doi.org/10.1109/icsm.2010.5609683 (in English)

18. Hattori, L., & Lanza, M. (2010). Syde: a tool for collaborative software development. In Proceedings of the 32nd
ACM/IEEE International Conference on Software Engineering (Vol. 2, pp. 235-238).

DOI: http://doi.org/10.1145/1810295.1810339 (in English)

19. Hegde, R., & Dewan, P. (2008). Connecting Programming Environments to Support Ad-Hoc Collaboration. In
2008 23rd IEEE/ACM International Conference on Automated Software Engineering (pp. 178-187). L'Ag-
uila, Italy. DOI: http://doi.org/10.1109/ase.2008.28 (in English)

20. Hundhausen, C. D., & Carter, A. S. (2014). Supporting Social Interactions and Awareness in Educational Pro-
gramming Environments. In Proceedings of the 5th Workshop on Evaluation and Usability of Program-
ming Languages and Tools (pp. 55-56). DOI: http://doi.org/10.1145/2688204.2688215 (in English)

21.Toannou, C., Burattin, A., & Weber, B. (2018). Mining Developers’ Workflows from IDE Usage.
Advanced Information Systems Engineering Workshops, 316, 167-179.

DOI: http://doi.org/10.1007/978-3-319-92898-2_14 (in English)

22.Jaspan, C., Jorde, M., Egelman, C., Green, C., Holtz, B., Smith, E., ... & Murphy-Hill, E. (2020). Enabling the
Study of Software Development Behavior With Cross-Tool Logs. IEEE Software (Vol. 37, Iss. 6,
pp. 44-51). DOI: http://doi.org/10.1109/ms.2020.3014573 (in English)

23. Jekutsch, S. ElectroCodeoGram: An Environment for Studying Programming. Retrieved from http://www.mi.fu-
berlin.de/wiki/pub/SE/ElectroCodeoGram/lancaster.pdf (in English)

24. Johnson, P. M., Hongbing Kou, Agustin, J., Chan, C., Moore, C., Miglani, J., ... & Doane. (2003). Beyond the
Personal Software Process: Metrics collection and analysis for the differently disciplined. In 25th Interna-
tional Conference on Software Engineering, 2003. Proceedings (pp. 641-646). Portland, USA.

DOI: http://doi.org/10.1109/icse.2003.1201249 (in English)

25. Kitchenham, B. A. & Charters, S. Guidelines for performing Systematic Literature Reviews in Software Engi-
neering. Retrieved from https://userpages.uni-koblenz.de/~laemmel/esecourse/slides/sIr.pdf (in English)

26. Kobayashi, T., Kato, N., & Agusa, K. (2012). Interaction histories mining for software change guide. In 2012
Third International Workshop on Recommendation Systems for Software Engineering (RSSE)

(pp. 73-77). Zurich, Switzerland. DOI: http://doi.org/10.1109/rsse.2012.6233415 (in English)

217. Lijie Z., Godfrey, M. W., & Hassan, A. E. (2007). Detecting Interaction Coupling from Task Interaction Histo-
ries. In 15th IEEE International Conference on Program Comprehension (ICPC '07) (pp. 135-144). Banff,
Canada. DOI: http://doi.org/10.1109/icpc.2007.18 (in English)

28. Lyulina, E., Birillo, A., Kovalenko, V., & Bryksin, T. (2021). TaskTracker-tool: A Toolkit for Tracking of Code
Snapshots and Activity Data During Solution of Programming Tasks. In Proceedings of the 52nd ACM

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2021/242042 © 0. O. Zhevaho, 2021

35

http://creativecommons.org/licenses/by/4.0/

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayka Ta nporpec tpancropry. Bicuuk J{HinponeTpoBcbKoro
HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOrO Tpancnopty, 2021, Ne 3 (93)

[HOOPMALIMHO-KOMYHIKALIITHI TEXHOJIOT' I TA MATEMATUYHE MOJIEJTFOBAHHS

Technical Symposium on Computer Science Education (pp. 495-501).
DOI: http://doi.org/10.1145/3408877.3432534 (in English)

29. Maalej, W., & Happel, H.-J. (2008). A Lightweight Approach for Knowledge Sharing in Distributed Software
Teams. In Practical Aspects of Knowledge Management (Vol. 5345, pp. 14-25).

DOI: http://doi.org/10.1007/978-3-540-89447-6_4 (in English)

30. Maruyama, K., Hayashi, S., & Omori, T. (2018). ChangeMacroRecorder: Recording fine-grained textual chang-
es of source code. In 2018 IEEE 25th International Conference on Software Analysis, Evolution and Reen-
gineering (SANER) (pp. 537-541). Campobasso, Italy. DOI: http://doi.org/10.1109/saner.2018.8330255
(in English)

31. Matsuzawa, Y., Okada, K., & Sakai, S. (2013). Programming process visualizer: A proposal of the tool for stu-
dents to observe their programming process. In Proceedings of the 18th ACM conference on Innovation and
technology in computer science education (pp. 46-51). DOI: http://doi.org/10.1145/2462476.2462493
(in English)

32. Mclintyre, M. M., & Walker, R. J. (2007). Assisting potentially-repetitive small-scale changes via semi-
automated heuristic search. In Proceedings of the twenty-second IEEE/ACM international conference on
Automated software engineering (pp. 497-500). DOI: http://doi.org/10.1145/1321631.1321718 (in English)

33. McKeogh, J., & Exton, C. (2004). Eclipse plug-in to monitor the programmer behaviour. In Proceedings of the
2004 OOPSLA workshop on eclipse technology eXchange (pp. 93-97). DOI:
http://doi.org/10.1145/1066129.1066148 (in English)

34. Minelli, R., & Lanza, M. (2013). Visualizing the workflow of developers. In 2013 First IEEE Working Confer-
ence on Software Visualization (VISSOFT) (pp. 1-4). Eindhoven, Netherlands.

DOI: http://doi.org/10.1109/vissoft.2013.6650531 (in English)

35. Murphy, G. C., Kersten, M., & Findlater, L. (2006). How are Java software developers using the Eclipse IDE?
IEEE Software (Vol. 23, Iss. 4, pp. 76-83). DOI: http://doi.org/10.1109/ms.2006.105 (in English)

36. Negara, S., Vakilian, M., Chen, N., Johnson, R. E., & Dig, D. (2012). Is It Dangerous to Use Version Control
Histories to Study Source Code Evolution? In ECOOP 2012-Object-Oriented Programming (Vol. 7313,
pp. 79-103). Berlin, Heidelberg. DOI: http://doi.org/10.1007/978-3-642-31057-7_5 (in English)

37.Norris, C., Barry, F., Fenwick Jr., J. B., Reid, K., & Rountree, J. (2008). Clocklt: collecting quantitative data on
how beginning software developers really work. ACM SIGCSE Bulletin, 40(3), 37-41.

DOI: http://doi.org/10.1145/1597849.1384284 (in English)

38.0mori, T., & Maruyama, K. (2008). A change-aware development environment by recording editing operations
of source code. In Proceedings of the 2008 international working conference on Mining software reposito-
ries (pp. 31-34). DOI: http://doi.org/10.1145/1370750.1370758 (in English)

39. Partel, M., Luukkainen, M., Vihavainen, A., & Vikberg, T. (2013). Test My Code. International Journal of
Technology Enhanced Learning (IJTEL), 5(3/4), 271. DOI: http://doi.org/10.1504/ijtel.2013.059495
(in English)

40. Parnin, C., & Gorg, C. Building Usage Contexts During Program Comprehension. In 14th IEEE International
Conference on Program Comprehension (ICPC'06) (pp. 13-22). Athens, Greece.

DOI: http://doi.org/10.1109/icpc.2006.14 (in English)

41. Petrillo, F., Soh, Z., Khomh, F., Pimenta, M., Freitas, C., & Gueheneuc, Y.-G. (2016). Towards Understanding
Interactive Debugging. In 2016 IEEE International Conference on Software Quality, Reliability and Securi-
ty (QRS) (pp. 152-163). Vienna, Austria. DOI: http://doi.org/10.1109/grs.2016.27 (in English)

42.Proksch, S., Nadi, S., Amann, S., & Mezini, M. (2017). Enriching in-IDE process information with fine-grained
source code history. In 2017 IEEE 24th International Conference on Software Analysis, Evolution and
Reengineering (SANER) (pp. 250-260). Klagenfurt, Austria. DOI:
http://doi.org/10.1109/saner.2017.7884626 (in English)

43.Robbes, R., & Lanza, M. (2008). SpyWare: a change-aware development toolset. In Proceedings of the 30th
international conference on Software engineering (pp. 847-850).

DOI: http://doi.org/10.1145/1368088.1368219 (in English)

44. Rothlisberger, D., Nierstrasz, O., Ducasse, S., Pollet, D., & Robbes, R. (2009). Supporting task-oriented naviga-
tion in IDEs with configurable HeatMaps. In 2009 IEEE 17th International Conference on Program Com-
prehension (pp. 253-257). Vancouver, Canada. DOI: http://doi.org/10.1109/icpc.2009.5090052 (in English)

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2021/242042 © 0. O. Zhevaho, 2021

36

http://creativecommons.org/licenses/by/4.0/

ISSN 2307-3489 (Print), ISSN 2307-6666 (Online)

Hayka Ta nporpec tpancropry. Bicuuk J{HinponeTpoBcbKoro
HAL[IOHAJILHOTO YHIBEPCUTETY 3alli3HHYHOrO Tpancnopty, 2021, Ne 3 (93)

[HOOPMALIMHO-KOMYHIKALIITHI TEXHOJIOT' I TA MATEMATUYHE MOJIEJTFOBAHHS

45, Salinger, S., Oezbek, C., Beecher, K., & Schenk, J. (2010). Saros: an eclipse plug-in for distributed party pro-
gramming. In Proceedings of the 2010 ICSE Workshop on Cooperative and Human Aspects of Software
Engineering (pp. 48-55). DOI: http://doi.org/10.1145/1833310.1833319 (in English)

46. Sharon, Y. EclipsEye Spying onEclipse. Retrieved from
http://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=064DE0D8481B3C9FD39F875EA79AD59C?doi
=10.1.1.709.9455&rep=repl&type=pdf (in English)

47.Shin, H., Choi, H.-J., & Baik, J. Jasmine: A PSP Supporting Tool. In Software Process Dynamics and Agility
(Vol. 4470, pp. 73-83). DOI: http://doi.org/10.1007/978-3-540-72426-1_7 (in English)

48. Shynkarenko, V., & Zhevago, O. (2019). Visualization of program development process. In 2019 IEEE 14th
International Conference on Computer Sciences and Information Technologies (CSIT) (pp. 142-145). Lviv,
Ukraine. DOI: http://doi.org/10.1109/stc-csit.2019.8929774 (in English)

49. Shynkarenko, V., & Zhevaho, O. (2020). Development of a toolkit for analyzing software debugging processes
using the constructive approach. Eastern-european Journal of Enterprise Technologies, 5(2(107)), 29-38.
DOI: http://doi.org/10.15587/1729-4061.2020.215090 (in English)

50. Sillitti, J., Succi, & Vernazza. (2003). Collecting, integrating and analyzing software metrics and personal soft-
ware process data. In 2003 Proceedings 29th Euromicro Conference (pp. 336-342). Belek-Antalya, Turkey.
DOI: http://doi.org/10.1109/eurmic.2003.1231611 (in English)

51. Sison, R. (2005). Personal software process (PSP) assistant. In 12th Asia-Pacific Software Engineering Confer-
ence (APSEC'05) (pp. 8). Taipei, Taiwan. DOI: http://doi.org/10.1109/apsec.2005.87 (in English)

52. Snipes, W., Nair, A. R., & Murphy-Hill, E. (2014). Experiences gamifying developer adoption of practices and
tools. In Companion Proceedings of the 36th International Conference on Software Engineering
(pp. 105-114). DOI: http://doi.org/10.1145/2591062.2591171 (in English)

53. Soetens, Q. D., & Demeyer, S. (2012). ChEOPSJ: Change-Based Test Optimization. In 2012 16th European
Conference on Software Maintenance and Reengineering (pp. 535-538). Szeged, Hungary.

DOI: http://doi.org/10.1109/csmr.2012.70 (in English)

54, Steinert, B., Cassou, D., & Hirschfeld, R. (2012). CoExist: Overcoming Aversion to Change Preserving Immedi-
ate Access to Source Code and Run-time Information of Previous Development States. ACM SIGPLAN No-
tices, 48(2), 107-118. DOI: http://doi.org/10.1145/2480360.2384591 (in English)

55.Yoon, Y., & Myers, B. A. (2011). Capturing and analyzing low-level events from the code editor. In Proceed-
ings of the 3rd ACM SIGPLAN workshop on Evaluation and usability of programming languages and tools
(pp. 25-30). DOI: http://doi.org/10.1145/2089155.2089163 (in English)

56. Yuan, X., Vega, P., Yu, H., & Li, Y. (2005). A Personal Software Process Tool for Eclipse Environment. Re-
trieved from http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.121.1638&rep=repl&type=pdf
(in English)

Received: February 12, 2021
Accepted: June 11, 2021

Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2021/242042 © 0. O. Zhevaho, 2021

37

http://creativecommons.org/licenses/by/4.0/

