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У статті показаний вплив моделюючих параметрів, що враховуються раціональним способом, 
застосовуючи фракційний факторіал двох рівнів, на розподіл напружень у різних місцях рейки. 
Представлено аналіз вертикальної динаміки взаємодії твердого колеса з рейкою. З метою мінімізації 
напружень рейки шукається оптимальний варіант комбінації безлічі параметрів із застосуванням методу 
фракційного факторіала двох рівнів. 

В статье показано влияние моделируемых параметров, которые учитываются рациональным способом с 
применением фракционного факториала двух уровней на распределение напряжений в различных местах 
рельсового звена. Представлен анализ вертикальной динамики взаимодействия жесткого колеса с рельсом. С 
целью минимизации напряжений рельса производится поиск оптимального варианта комбинации множества 
влияющих параметров с применением метод фракционного факториала двух уровней. 

The main goal of this paper is to show how the effects of maximum bending tensions at different locations in the 
track caused by simultaneous changes of various parameters can be estimated in a rational manner. The dynamics of 
the vertical interaction between a moving rigid wheel and a flexible railway track is investigated. An asymmetric 
linear three-dimensional beam structure model of a finite length of the track is suggested. The influence of eight 
selected track parameters on the dynamic behaviour of the track is investigated. A two-level fractional factorial 
design method is used in the search for the combination of numerical values of these parameters minimizing the 
maximum bending tensions. 

Introduction 

The aim of this paper is to show how the effects 
on maximum pressure tensions at different 
locations in the track caused by simultaneous 
changes of the parameters can be estimated in a 
rational manner [1, 2]. An accurate mathematical 
modelling and numerical solution of dynamic 
interaction problems for vehicles on their tracks 
were investigated [3–5]. Higher vehicle speeds and 
axle loads generally lead to the increased 
magnitudes of dynamic responses (such as 
deformations, accelerations and tensions) of the 
track as well as of the vehicle. The interactive 
forces developed between vehicle and track depend 
on the dynamic properties of the two and also on 
the vehicle speed and the initial irregularities along 
the track and the wheel perimeter. Therefore, a 
rather comprehensive mathematical model of the 
compound system including both vehicle and track 
should be used. 

Track models including rails and pads and also 
flexible sleepers resting on an elastic foundation 
have earlier been presented in reference [5]. The 
modelled rail is an infinite beam resting on a 
uniform support. This support includes three 
continuous layers on top of each other describing 
firstly, resilient pads with viscous damping, 
secondly, sleepers modelled as uniform beams and 

thirdly ballast modelled as a viscously damped 
foundation. 

Rails and sleepers were modelled using of 
Euler-Bernoulli beam elements. The response due 
to a moving mass with a non-linear Hertzian 
contact spring traversing a corrugated track was 
calculated using of time integration and modal 
superposition with proportional viscous damping 
added. Field experiments were performed which, 
according to [6], confirmed the predicted dynamic 
responses. The same type of track model and the 
same solution technique were also adopted. The 
contact force due to a moving wheel-set mass with 
different irregularities was calculated in [4]. 

The dynamic interaction between moving rigid 
wheel-set mass, with a perfectly round and smooth 
tread, and an initially straight and non-corrugated 
continuous railway track model was studied in this 
paper. Some examples including a four degrees-of-
freedom wheel-set model on a track model with 40 
sleeper bays were given in [5]. Rather 
comprehensive three-dimensional beam structure 
model of the track containing rail, pads, sleepers 
and ballast was developed. 

As it was mentioned, the dynamic interaction 
studied in this paper is restricted to the special case 
of a single rigid wheel with a smooth peripheral 
surface traversing an initially straight and non-
corrugated track. However, the general solution 
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technique in [6] allows a great variation of possible 
loading cases to be studied including a non-linear 
discretised vehicle model with several degrees-of-
freedom on a track with an arbitrary continuous 
vertical surface profile. Since complex modal 
synthesis is used, the model of the track structure 
can be very general (but linear). 

1. Mathematical Models of Track and Wheel-set 

The mathematical model of a railway track 
section of finite length (12.5 m) to be used in the 
numerical theoretical experiments will now be 
described. It consists of 25 sleepers bays as shown 
in Fig 1. 

Note that the dynamic loading of the track is 
here assumed to be symmetric with respect to a 
centre line between the two rails. Therefore only 

one half of the full structure is modelled. The 
railway track model  consists of one rail, 25 
resilient pads and 25 (halves of) concrete sleepers 
on ballast. Eight selected parameters influencing 
the dynamic properties of the track were 
investigated. These are the cross-sectional area 
Asleeper of the sleepers, the cross-sectional area Arail 
of the rail, the sleeper distance S, the pad stiffness 
kpad, the pad viscous damping cpad, the stiffness 
kcentre of ballast under the centre portion of sleepers, 
the stiffness kend of ballast under the rail-carrying 
portion of sleepers and viscous of ballast  cball (see 
Fig 1 and Table). The notation in Table refers to 
the numbering in the factorial design adopted in 
Chapter 5. 

 
Fig 1. Model of railway track structure and vehicle wheel-set mass: 

Ma – unsprung rigid mass; S – distance between sleepers; Fo – static vertical load; Fa – dynamic vertical load 
 

Table 1 

Track parameters investigate 

No Track parameter Indication 
1. Cross-sectional area of sleeper Asleeper,  m2 
2. Sleeper distance S, m 
3. Cross-sectional area of rail Arail, m2 

4. Pad stiffness kpad, N/m 
5. Pad viscous damping cpad, N/(m/s) 
6. Stiffness of ballast under center kcenter, (N/m)/m
7. Stiffness of ballast under end kend, (N/m)/m 
8. Viscous damping of ballast cball, N/(m/s) 

 
Rail and sleepers are modelled using beam 

elements with distributed mass, stiffness and 
damping. Each beam element is dynamically 
described using exact transcendentally frequency-
dependent finite elements. The general complex 
12⋅12 exact stiffness matrix for a damped uniform 
beam member in space vibration established in [9] 
was exploited. 

Two chosen numerical levels for Arail pertain to 
two types of rails used in Lithuania, namely R65 ir 
R75. Each level of Arail thereby corresponds to a 

certain pressure stiffness EIrail and a certain mass 
mrail per unit rail length. 

Since the concrete sleepers used in this study 
have a varying cross-sectional area Asleeper, each 
half sleeper is here modelled using five uniform 
beam elements. They are taken as undamped and 
obeying the beam theory. Each one of these five 
beam elements (with a specific numerical level of 
Asleeper ) has a constant pressure stiffness EIsleeper, a 
constant shore stiffness shore

sleeperA , a constant mass 
msleeper per unit beam length, and a constant rotator 
inertia 2

sleepermr per unit beam length. The measured 
eigenfrequencies were found to agree well with 
those calculated for the mathematical model used 
here [6]. The sleeper model rests on a viscously 
damped  foundation (Fig 1). Along the sleeper two 
different foundation stiffness (each with two 
different numerical levels) are assigned, namely, 
one stiffness of the ballast under the centre portion 
of the sleeper kcentre, and another stiffness of the 
ballast under the rail-carrying portion of the 
sleeper, kend. The full length of a Lithuanian sleeper 
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is 2.7 m. The centre portion here is assumed to 
have a total length of 0.7 m (leaving 1.0 m for each 
of the rail-carrying portions). The damping of the 
ballast under the full length of the sleepers is, 
however, assigned a constant numerical value. The 
sleeper equidistant is denoted by S=0.420 m and 
the length of M62 locomotive L=18 m. 

The resilient pads are modelled as linear 
discrete mass-less spring-damper systems with 
stiffness kpad and viscous damping cpad. The track is 
assumed to be initially straight with no 
corrugations on the railhead. It was found that a 
length of 25sleeper bays is sufficient for the 
loading case studied here (Chapter 3). The 
response calculated for the mid portion of the track 
model is thus only slightly affected by the choice 
of boundary conditions. These were chosen to 
allow a smooth entrance and exit of the moving 
mass on the track portion considered. Therefore the 
left boundary is fixed while the rightmost sleeper is 
free, but it rests on a foundation with double 
stiffness as compared with the other sleepers  
(Fig 1). 

Since the track response is of primary interest 
in the present study, the vehicle traversing the 
track model is simply modelled by a single rigid 
mass Ma. The wheel is assumed to have a smooth 
peripheral surface and it carries a static load F0 
equal to half the static axle load of the train. The 
wheel-set mass is moving with a prescribed 
constant linear velocity ν.  

Loading Cases 

The dynamic responses depend on the loading 
applied to the track. One exemplifying loading 
case is chosen to illustrate the calculation 
technique in this paper. The case studied models 
one wheel of a Russian freight locomotive 2M62 
with unsprung mass Ma=1925kg, axle load F0 = 99 
kN and velocity ν=100km/h. 

The dynamic responses of the track model 
chosen to be calculated in the numerical cases are: 

– maximum pressure tension σA in bottom 
beam fibre of sleeper cross-section at rail-seat; 

– maximum pressure tension σB in upper beam 
fibre of sleeper cross-section at centre; 

– maximum pressure tension σC in bottom 
beam fibre of rail cross-section between two 
sleepers (rail portion centrally between two 
sleepers). 

Which one of the sleepers  and rail cross-
section to be studied depends on the contact force 
calculated. The cross-section under each of three 
above mentioned cases (a,b,c) with the highest 
load found is considered. 

Physical and Modal Components 

The full interaction problem between the 
moving vehicle and the track is solved in a unified 
manner using an extended state-space vector 
approach and a complex modal superposition. The 
method allows the analysis of structures containing 
both physical and modal components. The so-
called physical components may be vehicles 
modelled as linear or non-linear (time-variant and 
state-independent) continuous physical 
components. The complex modal parameters can 
be determined through the analysis or experiments. 

In the present paper the vehicle wheel-set mass 
Ma is taken as a physical component and the track 
as a modal component. Note that only vertical 
vibration of the wheel-set is studied. The equation 
of motion for the wheel-set mass is (Fig  1): 

 0FFxM aaa =+ , (1) 

where ( )txx aa = is the vertical acceleration of the 
wheel-set and  Fa = Fa (t) is the contact force. 

The modal parameters of the track are 
determined here analytically. In a harmonic 
vibration at a fixed angular frequency ω, the 
relationship between the structural displacements 

tx of the track and the vector associated loads 

tF on the track can be written as: 

 ( ) ttt FxE =ω , (2) 

here tx and tF are complex-valued column 

vectors containing amplitudes in the frequency 
domain at the chosen nodes of the track model; 

tE (ω) - the dynamic structure stiffness matrix. 

The matrix ( )ωtE  will contain elements which 
are transcendental functions of ω. Due to damping 
of the track some elements in ( )ωtE  will be 
complex. 

The complex structure stiffness matrix obtained 
in this study is symmetric and the problem 
(Formula 2) is thus self-adjoint. This means that 
the complete modal solution can be determined 
from the eigenvalue problem: 
 

 ( )( ) ( ) 0=ω nn
t qE ,  (3) 

here ( )nq  is the complex eigenvector pertaining to 
the complex eigenfrequency ( )nω .  

In order to attain full decoupling of the 
governing equations of motion for the nodes of the 
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non-proportionally damped track structure, a 
complex modal superposition is adopted. The 
uncoupled equations of motion describing the 
transient loading of the track are written as [6]: 

 ( ) ( ) ( ) ( ) ( )tFNPtqbdiagtqadiag a
TT

nn
int=+ ,

  (4) 

where na  and nb  are so-called modal damping and 
modal stiffness (modal normalisation constants) 
[9] pertaining to the eigenvector n (n=1, 2, …, 2N, 
with N being the number of mode pairs included in 
the analysis). The complex modal displacements 
are assembled in the vector ( )tq . The right-hand 
side of (Formula 4) contains the modal loads. 
These are obtained by first transforming the 
physical contact force Fa(t) into equivalent nodal 
forces and moments using  interpolation 
polynomials assembled in the vector N, and then 
applying them to the two track nodes adjacent to 
the contact point. A pre-multiplication by the 
transpose of the modal matrix intP  (containing 
partitions of the eigenvectors ( )nq  as columns) 
finally yields the modal loads [6]. 

Two algebraic equations impose constraints on 
the transverse velocity and acceleration at the 
interface between wheel-set and track. These 
constraint equations can account for a possible 
given irregular profile of the track and out-of-
roundness of the wheel but this will not be done 
here. Loss of contact and recovered contact 
between wheel-set mass and track can also be 
treated but this phenomenon will not occur here. 
The two constraint equations are given in 
Formulae 5 and 6: 

 ( ) ( ) ( )tqPNtqP
d
dNtxa

intint +ν
ξ

= , (5) 

 ( ) ( ) ( )

( ) ( )tqidiagPN

tqP
d
dNtqP

d
Ndtx

n

a

ω+

+ν
ξ

+ν
ξ

=

int

intint2
2

2

,  (6) 
where ξ is a local length co-ordinate determining 
the instant location of the wheel-set mass between 
two nodes of the rail model. 

Note. The terms on the right-hand side of 
(Formula 6), determining the vertical acceleration 
experienced by the moving mass Ma, account for 
centripetal acceleration, Coriolis acceleration and 
acceleration of the rail head, respectively. 

An extended state-space vector is now 
introduced containing the physical displacement xa 

(t) and the physical velocity )(txa  of the wheel-set 

mass, and, further, the modal displacements 
( )tq and the impulse Fa (t)dt of the contact force. 

Thereby the equations of motion, (Formula1) and 
(Formula 4), and the two algebraic constraint 
equations (Formulae 5 and 6), can all be expressed 
in one unified first-order matrix format [6]. The so 
formulated transient vibration problem can be 
solved numerically in a straight-forward manner 
using, for instance, Adams integration routine with 
variable time-step. The time-dependent wheel-set 
mass displacement, velocity and acceleration and 
the contact force are thus determined. 

1. Two-level Fractional Factorial Design 

The dynamic properties of the track model 
depend on the assigned numerical levels of the 
eight selected track parameters (Table 1). 
Choosing and implementing proper levels of these 
parameters a desired optimal dynamic behaviour of 
the track (a best performance) may be obtained. 
The first step in the process of track design is to 
estimate the effects on critical dynamic responses 
due to variations in the track parameter levels. The 
estimated effects can then be used to formulate 
empirical functions which approximate the 
dynamic responses in a limited region of the eight-
parameter design space, and an optimum 
combination (in this region) of parameter levels 
may be found. Non-linear effects can often be 
neglected when empirical functions are used for 
limited numerical variations of the parameter 
levels. In the present study a parametric design 
involving only two numerical levels of each track 
parameter is used which is sufficient to estimate 
the linear effects. 

A two-level factorial design method serves the 
purpose of providing estimates of the linear main 
effects that are caused by numerical variations of 
track parameters. In addition, the factorial design 
can detect and estimate the interactions between 
parameters, i.e., the cases where the effect of one 
track parameter is strongly dependent on the 
numerical levels of the other track parameters. This 
is an important advantage of a factorial design as 
compared with the method of varying one 
parameter at a time while keeping the other 
parameters constant. 

In the following, the two numerical levels will 
be denoted by (+) for the high (stiff) level and (-) 
for the low (weak) level. The levels have been 
chosen in order to span a numerical range that is 
believed to be relevant to the physical problem 
considered. Hopefully, non-linear effects can be 
neglected inside the examined region. 
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A complete two-level factorial design including 
eight track parameters would require numerical 
experiments on 28 = 256 different track models 
(i.e. all combinations of track parameters). Such a 
complete factorial design yields, in addition to the 
estimates of eight main effects, the estimates of all 
interaction effects from 24 two-factor interactions, 
40 three-factor interactions, etc., up to one eight-
factor interaction. Note that an estimated main 
effect yields the change in response when the 
numerical value of the track parameter is moved 
from its (-) level to its (+) level. The occurrence of 
a large two-factor interaction effect means that an 
effect of one track parameter is strongly dependent 
on the numerical level another of track parameter. 

However, in many practical applications 
higher-order interactions can be neglected. 
Therefore. a so-called fractional factorial design 
with resolution IV and involving only 28-3 =32 
track models was here assumed to be sufficient. If 
only 32 (out of 256) track models are investigated, 
the main effects and interactions can no longer be 
entirely separated. A confounding of effects 
occurs. This means that an estimated effect is 
really the sum of several effects. It is therefore 
important that the main effects are not confounded 
with e.g. other main effects. Which track models to 
investigate in order to avoid the confounding of 
important effects is determined using fractional 
factorial design. The design matrix displays 16 
track models. 

Note that a design of resolution IV means that 
the main effect is not confounded with other main 
effects or two-factor interactions, but that two-
factor interactions are confounded with each other. 
The present choice of factorial design motivated by 
the assumption that three-factor and higher 
interactions are small that they will not 
significantly contribute to the estimated main 
effects, also means that each estimated two-factor 
interaction is the sum of three different two-factor 
interaction effects. A randomised order, or 
replicated runs at numerical experiments (which 
often are important in other experimental studies) 
is not necessary here since a repeated run will 
always render the same calculated results. 

 When an initial fractional factorial design 
has been completed a more detailed design may 
follow. When the estimated main effects are 
compared, some track parameters may be judged 
as less important than others. In this case the new 
design may exclude some of these parameters in 
order to decrease the number of possible track 
models. Then a design with a higher resolution can 
be adopted yet ending up with a reasonable 

computation time. A three-level factorial design 
which allows the estimation of quadratic effects, 
may also be adopted.  

2. Calculation Algorithm 

The dynamic interaction between the wheel-set 
mass and the different track models has been 
solved for using the technique described in Chapter 
4. The calculated normalised wheel displacement 
xa (t) and normalised contact force Fa (t) due to the 
chosen loading case (Chapter 3) on track. The 
displacement is normalised with respect to static 
displacement xstat. Contact force is normalised with 
respect to static load F0 (Chapter 4). Note that the 
normalised displacement xa /xstat is oscillating 
around a level lower than 1.0. The main reason is 
that the assumed quasistatic contribution from 
truncated high-frequency eigenmodes was not 
accounted for when the dynamic interaction was 
calculated by numerical integration [6]. 

A track model with all track parameters on 0-
level (i.e., at the origin of the examined eight-
parameter design space) was also investigated. 
This serves as an indication of whether or not the 
assumption that non-linear effects in the examined 
region could be neglected was correct. The 
maximum pressure tensions so obtained should in 
this case be close to the calculated average 
tensions.  The comparison shows quite satisfactory 
results, although a relative difference  indicating 
non-linearity is noted for the maximum pressure 
tension σC in the rail. 

3. Conclusions 

1. In case of using a two level fractional 
factorial method, 24 dynamical parameters 
combination are enough to investigate the 
mathematical model of track.  

2. The calculated results show that the 
suggested mathematical model of track is 
sufficiently correct and is not contradictory to the 
mechanic fundamentals laws. 

3. The pad viscous damping cpad  seems to have 
only a small effect on the distribution of maximum 
pressure tensions among the components of track. 

4. According to the estimation of stiffness 
parameters of rail track the maximum  pressure 
tensions were obtained when speed of the 
locomotive was about  30-50km/h. 
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