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MATEMATICAL MODEL OF DYNAMIC INTERACTION
BETWEEN WHEEL-SET AND RAIL TRACK

Y crarTi mOKa3aHWH BIUIMB MOJETIOIOYHMX IMapaMeTpiB, IO BPaxOBYIOTHCS paIiOHATBHIM CHOCOOOM,
3acTocoBylouM (pakuidHuii Qakropian ABOX PpIBHIB, Ha pO3MOALT HANpPYKeHb Y PI3HUX MICIHX PEUKH.
[MpeacraBneHo aHalli3 BEPTUKAIBLHOI JUHAMIKM B3a€MOii TBEpOOro Kojieca 3 peiKkoro. 3 MeTow MiHiMizarii
Hanpy)XeHb PEKH LIYKaEThCS ONTUMAJIBHUI BapiaHT KOMOiHaIil Oe3iivi mapaMeTpiB i3 3aCTOCYBaHHSM METOAY
(pakuiiiHoro ¢axropiana JBOX PiBHIB.

B crarbe 1mokazaHo BIMSHUE MOJCIUPYEMBIX ITaPaMETPOB, KOTOPHIE YUUTHIBAIOTCS PALIIOHAIBHBIM CIIOCOOOM C
NpUMEHeHneM (pakIMOHHOTO (haKkTopuasia ABYX YPOBHEH Ha pacnpeieieHHe HalpsDKEHWH B paslIMuHBIX MECTax
penbcoBoro 3BeHa. [IpencTaBieH aHanu3 BEPpTUKAIBHON TMHAMHUKH B3aNMOICHCTBHS KECTKOTO KoJreca ¢ perbcoM. C
LENTbI0 MUHUMH3ALUH HaNPSDKEHUH pebca IMPOU3BOJUTCS MTOUCK ONTUMAIBHOTO BapHaHTa KOMOMHAIIMN MHOXECTBA
BIIMSIIOIINX MTAPaMETPOB C MPUMEHEHHEM METO (PPaKIMOHHOTO (paKTOpHaia AByX YPOBHEH.

The main goal of this paper is to show how the effects of maximum bending tensions at different locations in the
track caused by simultaneous changes of various parameters can be estimated in a rational manner. The dynamics of
the vertical interaction between a moving rigid wheel and a flexible railway track is investigated. An asymmetric
linear three-dimensional beam structure model of a finite length of the track is suggested. The influence of eight
selected track parameters on the dynamic behaviour of the track is investigated. A two-level fractional factorial
design method is used in the search for the combination of numerical values of these parameters minimizing the
maximum bending tensions.

thirdly ballast modelled as a viscously damped
foundation.

The aim of this paper is to show how the effects Rails and sleepers were modelled using of
on maximum pressure tensions at different Euler-Bernoulli beam elements. The response due
locations in the track caused by simultaneous to a moving mass with a non-linear Hertzian
changes of the parameters can be estimated in a contact spring traversing a corrugated track was
rational manner [1, 2]. An accurate mathematical calculated using of time integration and modal
modelling and numerical solution of dynamic superposition with proportional viscous damping
interaction problems for vehicles on their tracks added. Field experiments were performed which,
were investigated [3—5]. Higher vehicle speeds and  according to [6], confirmed the predicted dynamic
axle loads generally lead to the increased responses. The same type of track model and the
magnitudes of dynamic responses (such as same solution technique were also adopted. The
deformations, accelerations and tensions) of the contact force due to a moving wheel-set mass with
track as well as of the vehicle. The interactive  different irregularities was calculated in [4].
forces developed between vehicle and track depend The dynamic interaction between moving rigid
on the dynamic properties of the two and also on  wheel-set mass, with a perfectly round and smooth
the vehicle speed and the initial irregularities along  tread, and an initially straight and non-corrugated
the track and the wheel perimeter. Therefore, a  continuous railway track model was studied in this
rather comprehensive mathematical model of the paper. Some examples including a four degrees-of-
compound system including both vehicle and track  freedom wheel-set model on a track model with 40
should be used. sleeper bays were given in [5]. Rather

Track models including rails and pads and also  comprehensive three-dimensional beam structure
flexible sleepers resting on an elastic foundation model of the track containing rail, pads, sleepers
have earlier been presented in reference [5]. The and ballast was developed.
modelled rail is an infinite beam resting on a As it was mentioned, the dynamic interaction
uniform support. This support includes three studied in this paper is restricted to the special case
continuous layers on top of each other describing of a single rigid wheel with a smooth peripheral
firstly, resilient pads with viscous damping, surface traversing an initially straight and non-
secondly, sleepers modelled as uniform beams and  corrugated track. However, the general solution
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technique in [6] allows a great variation of possible
loading cases to be studied including a non-linear
discretised vehicle model with several degrees-of-
freedom on a track with an arbitrary continuous
vertical surface profile. Since complex modal
synthesis is used, the model of the track structure
can be very general (but linear).

1. Mathematical Models of Track and Wheel-set

The mathematical model of a railway track
section of finite length (12.5 m) to be used in the
numerical theoretical experiments will now be
described. It consists of 25 sleepers bays as shown
in Fig 1.

Note that the dynamic loading of the track is
here assumed to be symmetric with respect to a
centre line between the two rails. Therefore only

Longitudinal section

one half of the full structure is modelled. The
railway track model consists of one rail, 25
resilient pads and 25 (halves of) concrete sleepers
on ballast. Eight selected parameters influencing
the dynamic properties of the track were
investigated. These are the cross-sectional area
Asieeper Of the sleepers, the cross-sectional area Apil
of the rail, the sleeper distance S, the pad stiffness
Kpag, the pad viscous damping Cpag, the stiffness
Keentre Of ballast under the centre portion of sleepers,
the stiffness keng of ballast under the rail-carrying
portion of sleepers and viscous of ballast Cpgy (see
Fig 1 and Table). The notation in Table refers to
the numbering in the factorial design adopted in
Chapter 5.
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Fig 1. Model of railway track structure and vehicle wheel-set mass:
M, — unsprung rigid mass; S — distance between sleepers; F, — static vertical load; F, — dynamic vertical load

Table 1
Track parameters investigate
° Track parameter Indication
Cross-sectional area of sleeper Asleepers m’
Sleeper distance S, m
Cross-sectional area of rail Arait, M
Pad stiffness Kpad, N/m

Pad viscous damping
Stiffness of ballast under center
Stiffness of ballast under end
Viscous damping of ballast

Cpad, N/(/s)
kcenter) (N/m)/m
kenda (N/m)/m
Chal, N/(m/s)
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Rail and sleepers are modelled using beam
elements with distributed mass, stiffness and
damping. Each beam element is dynamically
described using exact transcendentally frequency-
dependent finite elements. The general complex
12-12 exact stiffness matrix for a damped uniform
beam member in space vibration established in [9]
was exploited.

Two chosen numerical levels for A, pertain to
two types of rails used in Lithuania, namely R65 ir
R75. Each level of A thereby corresponds to a
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certain pressure stiffness Elyy and a certain mass
Myaj per unit rail length.

Since the concrete sleepers used in this study
have a varying cross-sectional area Agjeeper, €ach
half sleeper is here modelled using five uniform
beam elements. They are taken as undamped and
obeying the beam theory. Each one of these five
beam elements (with a specific numerical level of

Asieeper ) has a constant pressure stiffness Elgieeper, @

: h
constant shore stiffness AJh

Msieeper PET UNit beam length, and a constant rotator
inertia mrszleepe,per unit beam length. The measured

a constant mass

eigenfrequencies were found to agree well with
those calculated for the mathematical model used
here [6]. The sleeper model rests on a viscously
damped foundation (Fig 1). Along the sleeper two
different foundation stiffness (each with two
different numerical levels) are assigned, namely,
one stiffness of the ballast under the centre portion
of the sleeper Keenre, and another stiffness of the
ballast under the rail-carrying portion of the
sleeper, Keng. The full length of a Lithuanian sleeper



is 2.7 m. The centre portion here is assumed to
have a total length of 0.7 m (leaving 1.0 m for each
of the rail-carrying portions). The damping of the
ballast under the full length of the sleepers is,
however, assigned a constant numerical value. The
sleeper equidistant is denoted by S=0.420 m and
the length of M62 locomotive L=18 m.

The resilient pads are modelled as linear
discrete mass-less spring-damper systems with
stiffness Kpag and viscous damping Cpag. The track is
assumed to be initially straight with no
corrugations on the railhead. It was found that a
length of 25sleeper bays is sufficient for the
loading case studied here (Chapter 3). The
response calculated for the mid portion of the track
model is thus only slightly affected by the choice
of boundary conditions. These were chosen to
allow a smooth entrance and exit of the moving
mass on the track portion considered. Therefore the
left boundary is fixed while the rightmost sleeper is
free, but it rests on a foundation with double
stiffness as compared with the other sleepers
(Fig 1).

Since the track response is of primary interest
in the present study, the vehicle traversing the
track model is simply modelled by a single rigid
mass M,. The wheel is assumed to have a smooth
peripheral surface and it carries a static load Fy
equal to half the static axle load of the train. The
wheel-set mass is moving with a prescribed
constant linear velocity v.

Loading Cases

The dynamic responses depend on the loading
applied to the track. One exemplifying loading
case is chosen to illustrate the calculation
technique in this paper. The case studied models
one wheel of a Russian freight locomotive 2M62
with unsprung mass M,=1925kg, axle load Fy = 99
kN and velocity v=100km/h.

The dynamic responses of the track model
chosen to be calculated in the numerical cases are:

— maximum pressure tension op in bottom
beam fibre of sleeper cross-section at rail-seat;

— maximum pressure tension og in upper beam
fibre of sleeper cross-section at centre;

— maximum pressure tension o in bottom
beam fibre of rail cross-section between two
sleepers (rail portion centrally between two
sleepers).

Which one of the sleepers and rail cross-
section to be studied depends on the contact force
calculated. The cross-section under each of three
above mentioned cases (a,b,c) with the highest
load found is considered.
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Physical and Modal Components

The full interaction problem between the
moving vehicle and the track is solved in a unified
manner using an extended state-space vector
approach and a complex modal superposition. The
method allows the analysis of structures containing
both physical and modal components. The so-
called physical components may be vehicles
modelled as linear or non-linear (time-variant and
state-independent) continuous physical
components. The complex modal parameters can
be determined through the analysis or experiments.

In the present paper the vehicle wheel-set mass
M is taken as a physical component and the track
as a modal component. Note that only vertical
vibration of the wheel-set is studied. The equation
of motion for the wheel-set mass is (Fig 1):

M X, +F,=F;, @8

where %, = X, (t)is the vertical acceleration of the

wheel-set and F, = F, (t) is the contact force.

The modal parameters of the track are
determined here analytically. In a harmonic
vibration at a fixed angular frequency @, the
relationship between the structural displacements
X,of the track and the vector associated loads

Ift on the track can be written as:

E (0% =F, )

here X, and Iftare complex-valued column

vectors containing amplitudes in the frequency
domain at the chosen nodes of the track model;
E, (o) - the dynamic structure stiffness matrix.

The matrix E, (0)) will contain elements which
are transcendental functions of . Due to damping
of the track some elements in E, (0)) will be

complex.

The complex structure stiffness matrix obtained
in this study is symmetric and the problem
(Formula 2) is thus self-adjoint. This means that
the complete modal solution can be determined
from the eigenvalue problem:

(™)™ =0,

here q(”) is the complex eigenvector pertaining to

(n)

E, 3)

the complex eigenfrequency ®
In order to attain full decoupling of the
governing equations of motion for the nodes of the



non-proportionally damped track structure, a
complex modal superposition is adopted. The
uncoupled equations of motion describing the
transient loading of the track are written as [6]:

diag(a, )(t)+ diag(b, J(t)= P™ NTF, (t).
“4)
where @, and En are so-called modal damping and

modal stiffness (modal normalisation constants)
[9] pertaining to the eigenvector n (n=1, 2, ..., 2N,
with N being the number of mode pairs included in
the analysis). The complex modal displacements
are assembled in the vector CT(t). The right-hand

side of (Formula 4) contains the modal loads.
These are obtained by first transforming the
physical contact force F,(t) into equivalent nodal
forces and moments using interpolation
polynomials assembled in the vector N, and then
applying them to the two track nodes adjacent to
the contact point. A pre-multiplication by the

transpose of the modal matrix pint (containing
partitions of the eigenvectors q(”) as columns)

finally yields the modal loads [6].

Two algebraic equations impose constraints on
the transverse velocity and acceleration at the
interface between wheel-set and track. These
constraint equations can account for a possible
given irregular profile of the track and out-of-
roundness of the wheel but this will not be done
here. Loss of contact and recovered contact
between wheel-set mass and track can also be
treated but this phenomenon will not occur here.
The two constraint equations are given in
Formulae 5 and 6:

. dN D int = D int =&
X, (t) oA q(t)+ NP™d(t). (5)

2
d
Xa(t):dng

2pintey +2—vVvP g
dg

P™a(t)

+NP ™ diag (iwy, )i (t)

(t)+

(6)
where £ is a local length co-ordinate determining
the instant location of the wheel-set mass between
two nodes of the rail model.

Note. The terms on the right-hand side of
(Formula 6), determining the vertical acceleration
experienced by the moving mass M,, account for
centripetal acceleration, Coriolis acceleration and
acceleration of the rail head, respectively.

An extended state-space vector is now
introduced containing the physical displacement X,

(t) and the physical velocity X, (t) of the wheel-set

b

42

mass, and, further, the modal displacements
(T(t)and the impulse F, (t)dt of the contact force.

Thereby the equations of motion, (Formulal) and
(Formula 4), and the two algebraic constraint
equations (Formulae 5 and 6), can all be expressed
in one unified first-order matrix format [6]. The so
formulated transient vibration problem can be
solved numerically in a straight-forward manner
using, for instance, Adams integration routine with
variable time-step. The time-dependent wheel-set
mass displacement, velocity and acceleration and
the contact force are thus determined.

1. Two-level Fractional Factorial Design

The dynamic properties of the track model
depend on the assigned numerical levels of the
eight selected track parameters (Table 1).
Choosing and implementing proper levels of these
parameters a desired optimal dynamic behaviour of
the track (a best performance) may be obtained.
The first step in the process of track design is to
estimate the effects on critical dynamic responses
due to variations in the track parameter levels. The
estimated effects can then be used to formulate
empirical functions which approximate the
dynamic responses in a limited region of the eight-
parameter design space, and an optimum
combination (in this region) of parameter levels
may be found. Non-linear effects can often be
neglected when empirical functions are used for
limited numerical variations of the parameter
levels. In the present study a parametric design
involving only two numerical levels of each track
parameter is used which is sufficient to estimate
the linear effects.

A two-level factorial design method serves the
purpose of providing estimates of the linear main
effects that are caused by numerical variations of
track parameters. In addition, the factorial design
can detect and estimate the interactions between
parameters, i.e., the cases where the effect of one
track parameter is strongly dependent on the
numerical levels of the other track parameters. This
is an important advantage of a factorial design as
compared with the method of varying one
parameter at a time while keeping the other
parameters constant.

In the following, the two numerical levels will
be denoted by (+) for the high (stiff) level and (-)
for the low (weak) level. The levels have been
chosen in order to span a numerical range that is
believed to be relevant to the physical problem
considered. Hopefully, non-linear effects can be
neglected inside the examined region.



A complete two-level factorial design including
eight track parameters would require numerical
experiments on 2° = 256 different track models
(i.e. all combinations of track parameters). Such a
complete factorial design yields, in addition to the
estimates of eight main effects, the estimates of all
interaction effects from 24 two-factor interactions,
40 three-factor interactions, etc., up to one eight-
factor interaction. Note that an estimated main
effect yields the change in response when the
numerical value of the track parameter is moved
from its (-) level to its (+) level. The occurrence of
a large two-factor interaction effect means that an
effect of one track parameter is strongly dependent
on the numerical level another of track parameter.

However, in many practical applications
higher-order interactions can be neglected.
Therefore. a so-called fractional factorial design
with resolution IV and involving only 2*° =32
track models was here assumed to be sufficient. If
only 32 (out of 256) track models are investigated,
the main effects and interactions can no longer be
entirely separated. A confounding of -effects
occurs. This means that an estimated effect is
really the sum of several effects. It is therefore
important that the main effects are not confounded
with e.g. other main effects. Which track models to
investigate in order to avoid the confounding of
important effects is determined using fractional
factorial design. The design matrix displays 16
track models.

Note that a design of resolution IV means that
the main effect is not confounded with other main
effects or two-factor interactions, but that two-
factor interactions are confounded with each other.
The present choice of factorial design motivated by
the assumption that three-factor and higher
interactions are small that they will not
significantly contribute to the estimated main
effects, also means that each estimated two-factor
interaction is the sum of three different two-factor
interaction effects. A randomised order, or
replicated runs at numerical experiments (which
often are important in other experimental studies)
is not necessary here since a repeated run will
always render the same calculated results.

When an initial fractional factorial design
has been completed a more detailed design may
follow. When the estimated main effects are
compared, some track parameters may be judged
as less important than others. In this case the new
design may exclude some of these parameters in
order to decrease the number of possible track
models. Then a design with a higher resolution can
be adopted yet ending up with a reasonable
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computation time. A three-level factorial design
which allows the estimation of quadratic effects,
may also be adopted.

2. Calculation Algorithm

The dynamic interaction between the wheel-set
mass and the different track models has been
solved for using the technique described in Chapter
4. The calculated normalised wheel displacement
Xa (t) and normalised contact force F4 (t) due to the
chosen loading case (Chapter 3) on track. The
displacement is normalised with respect to static
displacement X5 Contact force is normalised with
respect to static load Fq (Chapter 4). Note that the
normalised displacement X, /Xt is oscillating
around a level lower than 1.0. The main reason is
that the assumed quasistatic contribution from
truncated high-frequency eigenmodes was not
accounted for when the dynamic interaction was
calculated by numerical integration [6].

A track model with all track parameters on 0-
level (i.e., at the origin of the examined eight-
parameter design space) was also investigated.
This serves as an indication of whether or not the
assumption that non-linear effects in the examined
region could be neglected was correct. The
maximum pressure tensions so obtained should in
this case be close to the calculated average
tensions. The comparison shows quite satisfactory
results, although a relative difference indicating
non-linearity is noted for the maximum pressure
tension ot in the rail.

3. Conclusions

1. In case of using a two level fractional
factorial method, 24 dynamical parameters
combination are enough to investigate the
mathematical model of track.

2. The calculated results show that the
suggested mathematical model of track is
sufficiently correct and is not contradictory to the
mechanic fundamentals laws.

3. The pad viscous damping Cyaq Seems to have
only a small effect on the distribution of maximum
pressure tensions among the components of track.

4. According to the estimation of stiffness
parameters of rail track the maximum pressure
tensions were obtained when speed of the
locomotive was about 30-50km/h.
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