ISSN 2307–3489 (Print), ІSSN 2307–6666 (Online)
Наука
та прогрес транспорту. Вісник
Дніпропетровського
національного університету залізничного
транспорту, 2018,
№ 5 (83)
ЕКОЛОГІЯ ТА ПРОМИСЛОВА БЕЗПЕКА
екологія Та промислова безпека
l. v. amelina1*, M. M. BILIAIEV2*, O. V. Berlov3*, l. a. CHEREDNYCHENKO4*
1*Dep.
«Hydraulics and Water Supply», Dnipro National University of
Railway Transport named after
Academician V. Lazaryan, Lazaryana
St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 273 15 09,
e-mail water.supply.treatment@gmail.com, ORCID
0000-0002-8525-7096
2*Dep. «Hydraulics and Water Supply», Dnipro National University of Railway Transport named after Academician V. Lazaryan, Lazaryana St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 273 15 09, e-mail water.supply.treatment@gmail.com, ORCID 0000-0002-1531-7882
3*Dep.
«Life Safety», Prydniprovska State Academy of Civil
Engineering and Architecture, Chernyshevskoho St., 24а,
49600,
tel. +38 (056) 756-34-57 e-mail berlov@pgasa.dp.ua, ORCID
0000-0002-7442-0548
4*Dep.
«Life Safety», Prydniprovska State Academy of Civil
Engineering and Architecture, Chernyshevskoho St., 24а,
49600,
tel. +38 (056) 756-34-57 e-mail cherednichenko@pgasa.dp.ua,
ORCID 0000-0002-1457-9282
RISK ASSESSMENT WITH
THE USE OF THE
MONTE-CARLO METHOD
Purpose. This work involves the development of a numerical model for the calculation of chemical contamination zones in the event of ammonia accident at the pumping station, as well as a model for assessing the risk of damage and wound depth in the body in case of fragments scattering formed during the pipeline explosion at the pumping station. Methodology. To solve this problem, we used the mass transfer equation for the ammonia propagation in the air. A potential flow model is used to calculate the air flow velocity field in the presence of buildings at the ammonia pumping station. The numerical solution of the three-dimensional equation for the velocity potential is derived by the cumulative approximation method. When using this numerical model, the irregular field of wind flow velocity, the change in vertical atmospheric diffusion coefficient with altitude, the ammonia emission intensity, the emission point of the chemical substance were taken into account. A differential splitting scheme was used to numerically solve the ammonia transfer equation in the air. Physical splitting of the three-dimensional mass transfer equation to a system of equations describing the contaminant transfer in one coordinate direction is carried out beforehand. At each step of splitting, the unknown value of ammonia concentration is determined by an explicit scheme of point-to-point computation. A mathematical model for calculating the fragments scattering in case of emergency at the pumping station is considered. Findings. On the basis of the developed numerical model, a computational experiment was conducted to estimate the level of air pollution at the ammonia pumping station. The area of possible damage of people during the fragment scattering during the explosion at the ammonia pumping station was determined. Originality. A numerical model has been developed that allows calculating the chemical contamination zones in case of emergency ammonia emission at the pumping station. The model is complemented by assessment of impact zones in case of fragment scattering during the pumping station explosion. Practical value. Based on the developed mathematical model, a computer program was created, which allows performing serial calculations for determining the impact zones during emergency situations at the chemically hazardous objects. The mathematical model developed can be used to perform serial calculations during the development of emergency response plan for chemically hazardous objects.
Keywords: atmosphere chemical pollution; emergency emission; mathematical modeling
Introduction
The emission of chemically hazardous substances during industrial accidents poses a threat to the lives of employees of these enterprises and the population at all. In this regard, an extremely important problem is the injury risk assessment in the event of such man-made accidents. To solve the problems of this class, a number of parameters are essentially plausible, such as the intensity of the chemical substance emission. This forces to use the models representing the probability of one or another parameter, in addition to deterministic mathematical models. Therefore, the scientific direction of the mathematical models development for predicting the environmental pollution level in case of emergency emission of chemically dangerous substances is of practical interest. This makes it possible in a certain way to take into account the probability of a number of parameters that affect the formation of chemical contamination zones.
To assess the risk of human injury at chemically hazardous objects [1, 2, 4, 6–9], as a rule two approaches are used. They are a Gaussian model or a normative technique used in the State Emergency Service of Ukraine (SES). Based on these approaches, one can quickly determine the extent of chemical contamination zones, but they have a number of significant disadvantages, for example, they do not take into account the influence of buildings. In connection with this creation of mathematical models that allow quick determining the dimensions of chemical contamination zones and the risk of damage to humans is an urgent task [10-13]. The chemical damage risk is defined as an area where the concentration of a chemically dangerous substance exceeds the maximum allowable concentration (MAC).
Purpose
The main purpose of the work is the development of a numerical model for quick prediction of chemical contamination zones in case of accidental ammonia emission at the pumping station, as well as the development of a model for the damage risk assessment and the depth of wound in the event of fragments scattering formed during the pipeline explosion.
Methodology
Emission of chemically hazardous substances can lead to extremely negative consequences – death of people (staff at the industrial site, population). The risk of lethal injury to humans depends on many factors, among which the mass of a chemically dangerous substance entering the atmosphere is determinative. As it is known, this value is of probabalistic nature. However, emission limits for certain objects can be set based on the analysis of available statistical data. One can use the Monte-Carlo method to determine the mass of a chemically dangerous substance at an industrial site (for example, an ammonia pumping station). In this case, the methodology for assessing the risk of injury will be as follows:
1. To set the limits for possible release of a chemically dangerous substance at industrial site known from expert judgment (M1 is the minimum known mass of the substance; M2 is the maximum known mass of the substance).
2. To determine the most likely mass of a chemically dangerous substance that can get into atmospheric air in the event of a possible emergency.
3. To determine the air pollution zone in the event of the release of a chemically dangerous substance in the amount. In this zone, there is a subzone where the concentration of a chemically dangerous substance exceeds the limit value (for example, a lethal concentration).
4. To determine the number of people who were in a subzone where a lethal concentration of a chemically dangerous substance was predicted.
Thus, solving a problem consists of two main steps:
the first is the calculation of the possible emission intensity of a chemically dangerous substance by the Monte-Carlo method;
the second is the calculation of the zones of chemical contamination with the definition of subzones of lethal injury.
To estimate the level of chemical pollution of the atmospheric air we will use the three-dimensional mass transfer equation [2, 3, 5]:
(1)
here – is ammonia concentration; – vector components of the wind flow velocity; – Dirac delta function; – turbulence diffusivity coefficients; – ammonia emission source coordinates; – coefficient taking into account the chemical decay of impurity, precipitation scavenging; –ammonia emission rate; – the rate of gravity sedimentation of the impurity; – time.
Boundary conditions for the mass transfer equation are considered in the work [5].
During the calculations, we will take into account unevenness of the vertical diffusion coefficient and the air velocity in height:
, ;
, (2)
where ; ; ; .
For numerical integration of equation (1) we will use finite-difference methods [5]. We perform preliminary splitting of equation (1) into the sequence of solving the following equations:
(3)
For numerical integration of equations (3), we use an alternating-triangular difference scheme [5] and the Euler method.
For mathematical modeling of the wind flow field at an industrial site, we use the model of potential flow. The calculation is based on equation [5]:
, (4)
where Р – is the velocity potential.
The air flow velocity components are defined as follows:
. (5)
The boundary conditions for equation (4) are as follows:
1) on impermeable boundaries and on the upper surface of the calculation area;
2) at the boundary where the flow enters the calculation area, – known air velocity;
3) P = const – at the outflow boundary of the calculated area.
For the numerical solution of equation (4), we use the method of total approximation, so we reduce this equation to the form:
, (6)
where – time dummies.
The calculated dependence for determining the velocity potential is written in the following form in two steps of splitting:
; (7)
.
The calculation according to this formula is terminated if the following condition is fulfilled:
,
where n – iteration index (number of steps in time); ε – small number.
We determine the components of the velocity vector on the edges of the difference cells as follows:
; ; . (8)
Based on the difference equations considered, a computer program was created that includes several subprograms:
1) subprogram for calculation of velocity potential field;
2) subprogram for calculation of air velocity field in the conditions of building;
3) subprograms for calculation of impurity concentration in the air for different time points after emergency emission.
For ease of use, the initial data file has been separated. The user adds to this file data on the location of buildings at the pumping station, the location of emergency emission, the intensity of the emission and other parameters.
FORTRAN was used to encode the difference equations.
Findings
The developed numerical model was used to calculate the zone of chemical contamination in case of accidental ammonia emission at the pumping station located near the Bashmachka settlement (Fig. 1). Based on expert data analysis, it has been determined that ammonia emission can range from 200 to 500 kg. Based on the Monte-Carlo method, it is estimated that, within this range, the highest probability of accident ammonia emission (19%) corresponds to a 300 kg emission. Therefore, this emission was taken for the computational experiment. Since there is some inertia at the pump stop, it is clear that the emission will occur within a short time, so it is assumed that it will last 3 sec., that is, we have a semi-continuous emission.
The calculation is based on two approaches. The first is a calculation based only on the kinematic model (1). The second is a calculation based on two models: aerodynamics (4) and mass transfer models (1). That is, for the first calculation, the location of buildings at the pumping station is not taken into account. For the second calculation, the presence of buildings at the pumping station is taken into account.
Fig.
1. Computational
scheme:
1
– the
place of emission of the chemically dangerous substance
at the pump station;
2
– receptor
position
Fig. 2. Chemical contamination zone of atmospheric air (building influence on forming the contamination zone is not taken into account, level z = 2.5 m, t = 35 sec)
Fig. 2 shows a chemical contamination zone of atmospheric air at the pumping station where ammonia emission takes place; the calculation is performed only based on the kinematic model. We see that chemical contamination zone has the form of “drop,” no deformation of this zone is found.
Fig. 3 shows the predicted zone of chemical contamination, to determine which the location of buildings at the pumping station is used.
Fig.
3.
Chemical contamination zone of atmospheric air,
the calculation is made taking into account
the buildings at the pumping station
(level
z = 2.5
m, t = 35 sec)
Comparing Fig. 3 and 2, we see a significant difference, namely the deformation of chemical contamination zone due to the influence of buildings on the process of toxic substance spread in the air.
Fig. 4. Changing the concentration of chemically dangerous substance at the receptor location point
Fig. 4 shows the dynamics of changes in the ammonia concentration at the industrial site near the building (Fig. 1, position of the receptor 2).
As we can see from Fig. 4, in the event of emergency ammonia emission, its concentration at the industrial site, near the industrial building, will be substantially higher than the MAC (MAC = 20 mg/m3), i.e. there will be a risk of toxic damage to people at the site. Let us note that the computation time is 5 sec.
At the second stage of the study, the risk of injury to humans in case of fragment scattering due to explosion at the ammonia pumping station was assessed. For example, such an explosion may occur on the pipelines located at the pumping station (Fig. 5).
Fig. 5. Pipelines at the ammonia pumping station (https://ru.wikipedia.org/wiki/Аммиакопровод)
Fig. 6. Scheme of fragment scattering
The impact zone is defined by the range of the pipeline fragments. To simulate the process of fragment scattering in the air, Newton's second law of motion dynamics of material point was used. In vector form for a fragment having mass m, motion dynamics is modeled by the equation:
(9)
where – is the vector of fragment scattering speed; – is gravity force; – resistance power; – resistance coefficient; – air density; – transparent frontal area.
The fragment formed during explosion has a complex geometric shape. To apply model (9), we perform the following procedure. First, we determine the volume of fragment. Next, suppose that a “reduced sphere” with a radius has such a volume. Then knowing that the volume of fragment is equal to , we find the radius of the “reduced sphere” using the expression
: .
Further, knowing the mass of the fragment material and its initial velocity, we make calculations based on the model (9). Preliminary vector equation (9) is written in the projections on the X, Y axis (the Y axis is directed vertically up):
; (10)
. (11)
The weight of fragment is determined as follows: , where – is the density of the fragment material.
Euler method was used for numerical integration of equations (10) – (11). The midsection is calculated as follows:
,
where .
For the calculation the angle of fragment scattering should also be specified as the initial data (Fig. 6, angle ).
Below the figure shows the area of possible human injury in case of ejection of steel fragment having a reduced diameter of 1 cm. The fragment ejection is assumed to be at 2 m height. The initial fragment velocity is taken at 150 m/sec. An important parameter for assessment of the impact zones in case of fragment scattering is to determine the angle at which the fragment leaves the explosion zone (Fig. 6, angle ). The range of the scattering angle may be different. The work deals with the range of fragment scattering . The Monte-Carlo method determined that the fragment scattering range corresponds to the highest probability – 37%. Fig. 7 presents the results of the calculation for the scattering angle .
Fig. 7. Impact zone in case of fragment scattering after the explosion at the ammonia pumping station
As we can see from Fig. 7, this fragment may reach the boundaries of Bashmachka and Kalynivka settlements. That is, there is a threat of damage to people at a sufficiently large distance from pumping station.
In addition to this model, a model of fragment movement in the body of the animal, which appeared to be in the impact zone, was also constructed (Fig. 8).
Fig. 8. Scheme
of damage to the animal by fragment:
1
– a fragment
in flight
The velocity of fragment before the “obstacle,” that is, the body, is determined based on solving equations (10) – (11). The fragment “meets” the body of the animal (human) at an angle (Fig. 8), which can be calculated in the process of solving equations (10) – (11), based on the determined values of the movement velocity components u, v and for a specific height H of fragment above the earth surface. We set the height H. Then the movement of fragment in the body begins. We model this process with the following equation of material point motion (Newton's second law):
, (12)
where – the velocity motion vector of the fragment in the body of an animal (human); – resistance power: – fragment weight.
Choosing the coordinate axis ОХ in the direction of fragment movement in the body, one can write the equation of movement (12) in projection on this axis:
, (13)
where – resistance coefficient; – thicknes of the muscular part of the body; – transparent frontal area. For calculations it is taken that .
We numerically solve this equation by the Euler method. The calculated dependence for determining the fragment velocity value in the body (at a new time step ), is determined as follows by the Euler method:
. (14)
Using this difference dependency, we determine the fragment velocity in the animal body at each time step. The depth of fragment penetration into the body (Fig. 8), at each time step, is determined as follows:
, (15)
where – corresponds to the starting point of the animal body, i.e. the place where the fragment enters the body (Fig. 8); – is the new position of the fragment in the body as a result of its movement.
It should be noted that dependence (15) makes it possible to estimate the wound size in the body that is to determine the damage severity to the animal or person in the first approximation.
Table 1 shows the data for determining the depth of fragments penetration into the body of the animal for the damage area of 1239 m. To calculate the wound size in the body the height is taken as the calculated one. That is, the data on the fragment penetration and its flight speed at this height were initial to calculate the fragment movement in the body. Let us note that time corresponds to the moment of fragment impact on the body.
Table 1
Penetration depth of the fragment
into the body
(distance 1239 m from the place of explosion of the
gas-air mixture)
Time |
0.001 sec |
0.003 sec |
0.007 sec |
0.020 sec |
0.030 sec |
x |
0.09 m |
0.24 m |
0.43 m |
0.77 m |
0.92 m |
From Table 1 we see that in about 0.03 sec., the animal's body will be wounded through.
Originality and practical value
A mathematical model has been developed that allows calculating the zones of chemical contamination in case of accidental ammonia emission at the pumping station. The model allows making predictive calculations taking into account the influence of buildings on the formation of chemical contamination zones. We also proposed a model to calculate the size of the damage area in case of fragment scattering generated during the explosion of ammonia+air mixture. This model is complemented by the model of fragment movement in the body of an animal (human).
The model can be used to design an emergency response plan (ERP) to identify the risk areas.
Conclusions
A numerical model for the prediction of chemical contamination zones at industrial sites in case of emergency emission of chemically hazardous substances is proposed.
Express model of damage risk assessment in case of explosion at the industrial site is developed.
Assessment of the level of air pollution in case of emergency ammonia emission at the pumping station.
List of reference links
Алымов, В. Т. Техногенный риск. Анализ и оценка : учеб. пособие для вузов / В. Т. Алымов, Н. П. Тарасова. – Москва : Академкнига, 2004. – 118 с.
Беляев, Н. Н. Защита зданий от проникновения в них опасных веществ : монография / Н. Н. Беляев, Е. Ю. Гунько, Н. В. Росточило. – Днепропетровск : Акцент ПП, 2014. – 136 с.
Марчук, Г. И. Математическое моделирование в проблеме окружающей среды / Г. И. Марчук. – Москва : Наука, 1982. – 320 с.
Оценка техногенного риска при эмиссии опасных веществ на железнодорожном транспорте / Н. Н. Беляев, Е. Ю. Гунько, П. С. Кириченко, Л. Я. Мунтян. – Кривой Рог : Р. А. Козлов, 2017. – 127 с.
Численное моделирование распространения загрязнения в окружающей среде / М. З. Згуровский, В. В. Скопецкий, В. К. Хрущ, Н. Н. Беляев. – Киев : Наук. думка, 1997. – 368 с.
Barret, A. M. Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectiveness : Degree of Doctor of Philosophy / Anthony Michael Barret ; Carnegie Mellon University. – Pittsburg, Pennsylvania, 2009. – 123 p.
Berlov, O. V. Atmosphere protection in case of emergency during transportation of dangerous cargo / O. V. Berlov // Наука та прогрес транспорту. – 2016. – № 1 (61). – С. 48–54. doi: 10.15802/stp2016/60953
Biliaiev, M. M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography / M. M. Biliaiev, M. M. Kharytonov // NATO Science for Peace and Security. Series C: Environmental Security. – Dordrecht, 2012. – P. 87–91. doi: 10.1007/978-94-007-1359-8_15
CEFIC Guidance on safety Risk Assessment for Chemical Transport Operations [Electronic resource] // Croner-i. – Available at: http://clc.am/OnkmUw – Title from the screen. – Accessed : 08.11.2019
Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility / A. Tumanov, V. Gumenyuk, V. Tumanov // IOP Conf. Series: Earth and Environmental Science. – 2017. – Vol. 90. – P. 1–11. doi: 10.1088/1755-1315/90/1/012027
Effect of barriers on the status of atmospheric pollution by mathematical modeling / Z. Naserzadeh, F. Atabi, F. Moattar, N. Moharram Nejad // Bioscience Biotechnology Research Communication. – 2017. – Vol. 10 (1). – P. 192–204.
Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain / C. Cao, C. Li, Q. Yang, F. Zhang // Sustainability. – 2017. – Vol. 9. – Іss. 11. – P. 1–22. doi: 10.3390/su9112103
Protective Action Criteria. A Review of Their Derivation, Use, Advantages and Limitations [Electronic resource] // Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. – Edmonton, Alberta, 2017. – Available at: http://open.alberta.ca/publications/9781460131213 – Title from the screen. – Accessed : 08.11.2019
The analysis of the use of mathematical modeling for emergency planning purposes / O. Zavila, P. Dobes, J. Dlabka, J. Bitta // The Science for Population Protection. – 2015. – No. 2. – P. 1–9.
Л. В. АМЕЛіНА1*, М. М. БІЛЯЄВ2*, о. в. БЕРЛОВ3*, л. а. ЧЕРЕДНИЧЕНКО4*
1*Каф.
«Гідравліка та водопостачання»,
Дніпровський національний університет
залізничного транспорту імені академіка
В. Лазаряна, вул. Лазаряна, 2, Дніпро,
Україна, 49010, тел. +38 (056) 273 15 09,
ел. пошта
water.supply.treatment@gmail.com, ORCID 0000-0002-8525-7096
2*Каф.
«Гідравліка та водопостачання»,
Дніпровський національний університет
залізничного транспорту імені академі-ка
В. Лазаряна, вул. Лазаряна, 2, Дніпро,
Україна, 49010, тел. +38 (056) 273 15 09,
ел. пошта
water.supply.treatment@gmail.com, ORCID 0000-0002-1531-7882
3*Каф.
«Безпека життєдіяльності», ДВНЗ
«Придніпровська державна академія
будівництва та архітектури», вул.
Чернишевського, 24а, Дніпро, Україна,
49600, тел. +38 (056) 756 34 57, ел. пошта
berlov@pgasa.dp.ua,
ORCID 0000-0002-7442-0548
4*Каф. «Безпека
життєдіяльності», ДВНЗ «Придніпровська
державна академія будівництва та
архітектури», вул. Чернишевського, 24а,
Дніпро, Україна, 49600, тел. +38 (056) 756 34 57,
ел. пошта cherednichenko@pgasa.dp.ua,
ORCID
0000-0002-1457-9282
оцінка ризику
УРАЖЕННЯ
з використанням методу
монте-карло
Мета. Ця робота передбачає розробку чисельної моделі для розрахунку зон хімічного забруднення у разі аварійної емісії аміаку на території насосної станції, що здійснює перекачування, а також розробку моделі оцінки ризику ураження та глибини рани в тілі у випадку розлітання уламків, що утворюються під час вибуху трубопроводу. Методика. Для розв’язання поставленої задачі – визначення зон поширення аміаку в атмосферному повітрі – використано рівняння масопереносу. Для розрахунку поля швидкості повітряного потоку за наявності будівель на території насосної станції, що перекачує аміак, використано модель потенціальної течії. Чисельне розв’язання тривимірного рівняння для потенціалу швидкості проведено за допомогою методу сумарної апроксимації. Під час використання цієї чисельної моделі враховано нерівномірне поле швидкості вітрового потоку, зміну вертикального коефіцієнта атмосферної дифузії з висотою, інтенсивність емісії аміаку, місце викиду хімічно небезпечної речовини. Для чисельного розв’язання рівняння переносу аміаку в атмосферному повітрі використано різницеву схему розщеплення. Попередньо здійснено фізичне розщеплення тривимірного рівняння масопереносу на систему рівнянь, що описують перенос забруднювача в одному координатному напрямку. На кожному кроці розщеплення невідоме значення концентрації аміаку визначено за явною схемою біжучого рахунку. Розглянуто математичну модель розрахунку розлітання уламків під час вибуху на території насосної станції. Результати. На основі розробленої чисельної моделі проведено обчислювальний експеримент для оцінки рівня забруднення атмосферного повітря на території насосної станції, що перекачує аміак. Визначено зону можливого ураження людей у разі розлітання уламків під час вибуху на території станції. Наукова новизна. Розроблено чисельну модель, що дозволяє розраховувати зони хімічного зараження в разі аварійної емісії аміаку на території насосної станції. Модель доповнено оцінкою зон ураження у випадку розлітання уламків під час вибуху. Практична значимість. На базі розробленої математичної моделі створено комп’ютерну програму, що дозволяє проводити серійні розрахунки для визначення зон ураження під час надзвичайних ситуацій на території хімічно небезпечних об’єктів. Розроблена математична модель може бути використана під час складання плану ліквідації аварійної ситуації (ПЛАС) для хімічно небезпечних об’єктів.
Ключові слова: хімічне забруднення атмосфери; аварійна емісія; математичне моделювання
Л. В. АМЕЛИНА1*, Н. Н. БЕЛЯЕВ2*, А. В. БЕРЛОВ3*, Л. А. чередниченко4*
1*Каф. «Гидравлика и водоснабжение», Днипровский национальный университет железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днипро, Украина, 49010, тел. +38 (056) 273 15 09, эл. почта water.supply.treatment@gmail.com, ORCID 0000-0002-8525-7096
2*Каф.
«Гидравлика и водоснабжение», Днипровский
национальный университет железнодорожного
транспорта имени академика В. Лазаряна,
ул. Лазаряна, 2, Днипро, Украина, 49010, тел.
+38 (056) 273 15 09,эл. почта
water.supply.treatment@gmail.com, ORCID 0000-0002-1531-7882
3*Каф.
«Безопасность жизнедеятельности»,
ГВУЗ «Приднепровская
государственная академия строительства
и архитектуры»,
ул. Чернышевского, 24а, Днипро, Украина,
49600, тел. +38 (056) 756 34 57, эл. почта
berlov@pgasa.dp.ua,
ORCID 0000-0002-7442-0548
4*Каф.
«Безопасность жизнедеятельности»,
ГВУЗ «Приднепровская
государственная академия строительства
и архитектуры»,
ул. Чернышевского, 24а, Днипро, Украина,
49600, тел. +38 (056) 756 34 57, эл. почта
cherednichenko@pgasa.dp.ua,
ORCID 0000-0002-1457-9282
ОЦЕНКА РИСКА ПОРАЖЕНИЯ
С
ИСПОЛЬЗОВАНИЕМ МЕТОДА
МОНТЕ-КАРЛО
Цель. Данная работа предусматривает разработку численной модели для расчета зон химического загрязнения в случае аварийной эмиссии аммиака на территории насосной станции, осуществляющей перекачку. а также разработку модели оценки риска поражения и глубины раны в теле при разлете осколков, образовавшихся во время взрыва трубопровода. Методика. Для решения поставленной задачи – определения зон распространения аммиака в атмосферном воздухе – использовано уравнение массопереноса. Для расчета поля скорости воздушного потока при наличии зданий на территории насосной станции, перекачивающей аммиак, использовано модель потенциального течения. Численное решение трехмерного уравнения для потенциала скорости проведено с помощью метода суммарной аппроксимации. При использовании этой численной модели учтено неравномерное поле скорости ветрового потока, изменение вертикального коэффициента атмосферной диффузии с высотой, интенсивность эмиссии аммиака, место выброса химически опасного вещества. Для численного решения уравнения переноса аммиака в атмосферном воздухе использована разностная схема расщепления. Предварительно осуществлено физическое расщепление трехмерного уравнения массопереноса на систему уравнений, описывающих перенос загрязняющего вещества в одном координатном направлении. На каждом шагу расщепления неизвестное значение концентрации аммиака определено по явной схеме бегущего счета. Рассмотрена математическая модель расчета разлетания обломков на территории насосной станции. Результаты. На основе разработанной численной модели проведен вычислительный эксперимент для оценки уровня загрязнения атмосферного воздуха на территории насосной станции, которая перекачивает аммиак. Определена зона возможного поражения людей при разлетании осколков во время взрыва на территории станции. Научная новизна. Разработана численная модель, позволяющая рассчитывать зоны химического заражения при аварийной эмиссии аммиака на территории насосной станции. Модель дополнена оценкой зон поражения при разлетании осколков во время взрыва. Практическая значимость. На базе разработанной математической модели создана компьютерная программа, позволяющая проводить серийные расчеты для определения зон поражения при чрезвычайных ситуациях на территории химически опасных объектов. Разработанная математическая модель может быть использована при составлении плана ликвидации аварийной ситуации (ПЛАС) для химически опасных объектов.
Ключевые слова: химическое загрязнение атмосферы; аварийная эмиссия; математическое моделирование
References
Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk. Analiz i otsenka: uchebebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)
Biliaiev, N. N., Gunko, E. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)
Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka. (in Russian)
Belyaev, N. N., Gunko, Y. Y., Kirichenko, P. S., & Muntyan, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoi Rog: Kozlov R. A. (in Russian).
Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Biliaiev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kyiv: Naukova dumka. (in Russian)
Barret, A. M. (2009). Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectivness. (Doctoral dissertation). Carnegie Mellon University, Pittsburg, Pennsylvania. (in English)
Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Sciance and Transport Progress, 1(61), 48-54. doi: 10.15802/stp2016/60953 (in English)
Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security, 87-91. doi: 10.1007/978-94-007-1359-8_15@ (in English)
CEFIC Guidance on safety Risk Assessment for Chemical Transport Operations. Croner-i. Retrieved from http://clc.am/OnkmUw (in English)
Tumanov, A., Gumenyuk, V., & Tumanov, V. (2017). Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility. IOP Conf. Series: Earth and Environmental Science, 90, 1-11. doi: 10.1088/1755-1315/90/1/012027 (in English)
Naserzadeh, Z., Atabi, F., Moattar, F., & Nejad, N. M. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communications, 10(1), 192-204. (in English)
Cao, C., Li, C., Yang, Q., & Zhang, F. (2017). Multi-Objective Optimization Model of Emergency Organization Allocation for Sustainable Disaster Supply Chain. Sustainability, 9(11), 1-22. doi: 10.3390/su9112103 (in English)
Government of Alberta. (2017). Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrived from http://open.alberta.ca/publications/9781460131213 (in English)
Zavila, О., Dobes, Р., Dlabka, J., & Bitta, J. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. The Science for Population Protection, 2, 1-9. (in English)
Received: August 13, 2019
Accepted: November 26, 2019
Creative Commons Attribution 4.0 International
doi: https://doi.org/10.15802/stp2019/ © Л. В. Амеліна, М. М. Біляєв, О. В. Берлов, Л. А. Чередниченко, 2019