ISSN 2307–3489 (Print), ІSSN 2307–6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського
національного університету залізничного транспорту, 201
9, № 2 (80)



ЗАЛІЗНИЧНА КОЛІЯ ТА АВТОМОБІЛЬНІ ДОРОГИ

ЗАЛІЗНИЧНА КОЛІЯ та автомобільні дороги

UDC 625.143.46

A. NEMETH1*, S. FISCHER2

1*Dep. «Transport Infastructure and Water Resources Engineering», Szechenyi Istvan University,
Egyetem Sq., 1, Gyor, Hungary, 9026, tel. + 36 (96) 613 544, e-mail nemeth.attila@sze.hu,
ORCID 0000-0002-3477-6902
2Dep. «Transport Infastructure and Water Resources Engineering», Szechenyi Istvan University,
Egyetem Sq., 1, Gyor, Hungary, 9026, tel. + 36 (96) 613 544, e-mail fischersz@sze.hu,
ORCID 0000-0001-7298-9960

FIELD TESTS OF GLUED INSULATED RAIL JOINTS

WITH USAGE OF SPECIAL PLASTIC AND STEEL

FISHPLATES
 

Purpose. The aim was to compare behavior of polymer-composite fishplated and control steel fishplated (type GTI and MTH-P) glued insulated rail joints in railway track. Methodology. After laboratory tests (shear tests of glue materials, 3-point-bending tests, axial pull tests), as well as field inspections, trial polymer-composite and control (steel) fishplated glued insulated rail joints were built into railway tracks with (almost) the same border conditions (rail profiles, cross section parameters, track condition, etc.). The authors summarize in this paper the results of field tests related to polymer-composite, as well as control (steel) fishplated glued insulated rail joints between 2015 and 2018 considering measured data of track geometry recording car and straightness tests. Findings. The investigation and diagnostics of experimental (fiber-glass reinforced fishplate) and control (steel fishplate) rail joints (straightness tests, track geometry recording car measurements) are in progress. Originality. The goal of the research is to investigate the application of this new type of glued insulated rail joint where the fishplates are manufactured at high pressure, regulated temperature, glass-fiber reinforced polymer composite plastic material. The usage of this kind of glued insulated rail joints is able to eliminate the electric fishplate circuit and early fatigue deflection and it can ensure the isolation of rails’ ends from each other by aspect of electric conductivity. Practical value. The polymer-composite fishplated glued-insulated rail joints and control steel fishplated rail joints were built into the No. 1 main railway line (Kelenföld-Hegyeshalom) in Hungary at three different railway stations. The accurate time could not be determined when the polymer-composite fishplated glued-insulated rail joints reach the end of their lifetime as the result of previous research. In this article the investigation of deterioration process of glued-insulated rail joints is demonstrated.

Keywords: polymer-composite; fishplate; rail joint; railway; field test

Purpose

In this paper the authors summarize the railway measurement results related to APATECH (Russian branded) glued insulated rail joints with special fibre-glass reinforced plastic (polymer-composite) fishplates.

According to railway maintenance experiences of Hungarian Railways (MÁV) and Raaberbahn, Győr-Sopron-Ebenfurth Railway (GYSEV in Hungarian abbreviation, or ROeEE in German abbreviation), glued insulated steel fishplated joints need a lot of maintenance source due to rail deformations (especially settlements). The next problem is the false railway control signal due to rail end failures that results railway capacity restriction. Other problems are for example: glue material, endposts, rail ends, rail profile inner corner wear and plastic deformation.

In the international literature the researchers have been dealt with the following subtopics (the order does not mean the relevancy and the list was not made with the demand of fullness). In the following (in the literature review) the authors write only ‘rail joints’, but, of course, e.g. mechanical rail joints mainly differ from ‘insulated rail joints’, as well as from ‘glued insulated rail joints’:


standards and prescriptions related to design, dimensioning and structural configuration [15, 27]

determination of general failures and failure patterns of rail joints and identification of the reason of breakdown [9, 10, 21, 24, 25, 26, 30, 37, 39, 40, 41, 46, 50, 54, 60, 66, 70],

improvement (reinforcement) and development of rail joints (mechanical joints, insulated joints, as well as glued insulated joints) and elements of these rail joints [2, 12, 19, 21, 22, 23, 26, 28, 30, 32, 37, 40, 46, 53, 54, 58, 60, 70],

analysis of the effect of different materials of rail endpost on carrying capacity (strength) and stiffness of rail joints [2, 16, 21, 22, 23, 26, 60],

investigation of rail joints’ in mechanical and electrical aspects [2, 8, 9, 10, 11, 12, 13, 14, 16, 19, 21, 22, 23, 24, 25, 26, 28, 29, 30, 32, 33, 34, 37, 38, 39, 46, 50, 52, 53, 54, 55, 56, 57, 58, 60, 66, 69, 70],

examination of deformation (mainly deflection) behavior of rail joints, as well as the stress distribution in the rail head and fishplates; examination of wheel-rail contact in the aspect of stress and/or strain distribution, as well as wear behavior [2, 8, 9, 10, 12, 13, 16, 18, 19, 23, 25, 28, 30, 33, 34, 37, 38, 46, 50, 53, 54, 55, 56, 57, 58, 60, 69, 70],

investigation of the effect of the arc shape at railhead edges on the stress distribution in the rail head [12, 57],

analysis of sleeper settlement and stress distribution on the contact surface between sleepers and ballast bed, considering the usage of geosynthetic reinforcement solutions or without them [1, 9, 10, 19, 34, 36, 39, 46, 54, 58, 64],

investigation of support properties of rail joints and rail tracks as well as ballast deformation [1, 35, 36, 37, 46, 60, 64],

investigation of glue material quality adequacy related to glued insulated rail joints [52, 53, 66, 67],

analysis of the quantity of glue material between fishplates and rail web due to assembly process, as well as the effect of the glue surface patterns on carrying capacity (strength) of rail joints [52, 53, 66, 67],

investigation of epoxy de-bonding phenomena [52, 53, 66],

examination of the effect of the angle between the rail longitudinal axis and rail joint cut (endpost) (i.e. square and inclined rail joints) on the mechanical behavior of the rail joint [8, 11, 12, 13, 18, 37, 38, 58, 68],

analysis of the effect of the size of the endpost [19, 21, 22, 23, 26, 57, 58],

investigation of lipping (and/or ratchetting) at the contact lines between rail ends and endpost elements [25, 26, 28],

analysis of electric arc burning at insulated rail joints in high-speed railway stations [17],

investigation of dynamic effect in railway tracks due to railway vehicles with or without under sleeper pads [35],

investigation of speed-dependency of stresses arising in rail joints’ elements [39],

analysis of detecting method of missing and/or loose screws in the rail joints [41],

development of special measurement techniques for determination of faults (electrical and/or mechanical) in rail joints [2, 7, 13, 26, 41, 49, 55, 56, 59, 66],

development of defect-based condition assessment methods [20],

investigation of dynamic effects due to rail joints on railway vehicles and railway track elements [9, 10, 11, 24, 32, 33, 34, 41, 50, 51, 55, 60, 61, 62, 65, 69, 70],

considering dynamic effects of railway vehicles on railway tracks as well as measurement of equivalent conicity [3, 4, 6],

investigation of calculation and evaluation techniques of railway track geometry measurement data made by track geometry recording cars in the aspect of real chord values [5].

Foreign research teams worked the methodologies below:

numerical analysis with finite element method (FEM), static and dynamic approaches [10, 12, 13, 16, 25, 30, 37, 38, 46, 50, 53, 54, 60, 69, 70],

laboratory tests [2, 13, 21, 22, 23, 25, 26, 28, 40, 52, 54, 55, 56, 66, 67],

field (in-situ) tests [2, 9, 10, 11, 18, 24, 32, 34, 35, 39, 41, 52, 53, 54, 55, 58, 59, 61],

image analysis supplemented with Wavelet calculation method,

calculations based on mathematical and physical theories, i.e. MATLAB [17],

mathematical calculation of deterioration and maintenance theories [42, 43, 44, 45, 51],

IoT (internet of things) techniques,

electrical measurement methods [14, 29],

signal processing for non-destructive testing of railway tracks [59],

mathematical (statistical) regression analysis and artificial intelligence, as well as artificial neural networks [42, 43, 44, 45].

There are some interesting results from the international literature review:

significant part of the rail joints’ failure is related to reduced moment of inertia of the fishplate pair (compared to parent rail section) [54], as well as increased stress values in the rail head that can lead to plastic deformation, lipping in the rail steel material [25, 26, 28],

the maintenance cost of rail joints is enormous, it is very significant aspect because the avoiding of insulated rail joints from the CWR tracks is very complicated [54],

it is very important to choose adequate glue material for glued insulated rail joints [2, 16, 21, 22, 23, 26, 60], respectively the endposts’ material and thickness [19, 21, 22, 23, 26, 57, 58],

modified railhead geometry (longitudinal section, i.e. arch shape) is able to ensure reduced stresses and higher life-time for rail joints [12, 57],

lipping phenomena in the rail head near the endpost can be hindered by higher rail steel grade or modified-treated steel materials in the rail head [26, 28, 40],

external reinforcement methods are able to ensure higher bending stiffness for fishplated rail joints [54],

the usage of inclined (30° and 45°) rail joints helps with reducing vertical displacement, noise and vibration compared to square ones [11, 12, 18],

it has to be mentioned that the railway operation practice verified that inclined rail joints are not adequate (i.e. they are not better than square ones) [68],

importance of glue patterns (as well as the quantity of glue material between fishplates and rail web) [52, 53, 66, 67],

the support geometry influences the arising stress-strain state in the rail joint elements [35, 37, 46, 60],

a lot of methods were developed that are adequate for detection faults and stress-strain state in the rail joints (i.e. for example: ultrasonic test, acousto-elastic method, neutron diffraction method, X-ray measurements, usage of optical fibre Bragg grating sensors) [2, 7, 13, 26, 41, 49, 55, 56, 59, 66],

additional dynamic effect due to rail joints can lead to faster deterioration process [9, 10, 11, 24, 32, 33, 34, 41, 50, 51, 55, 58, 60, 61, 69, 70],

the geometrical deterioration process of railway track as well as rail joints can be determined by up-to-date methods, e.g. analysis of measured data of railway track geometry recording cars using with artificial intelligence, artificial neural networks, etc. [42, 43, 44, 45],

unequal elasticity of the subrail base as well as quasi-static calculation method can be considered during railway superstructure calculations [1, 36],

dynamic effects of railway vehicles on railway tracks can be measured by railway track geometry recording car (e.g. type Plasser&Theurer EM 250, etc.), values of velocity, accelerations in different directions are able to be measured, derivatives of measures values can be calculated, in this way the occurent geometrical problems of rail joints are able to be determined and localized [3, 4, 6, 62, 65].

The authors investigated and made diagnostics of experimental fibre-glass reinforced fishplated and designated for inspection control steel fishplated rail joints. The process of the railway investigation was the following:

the locations designations where the polymer-composite fishplated glued insulated joints and the assigned steel fishplated insulated railway joints were built in railway track,

analyzing of the track geometry recording car measurements (only evaluation of longitudinal settlement data),

to performing the straightness tests, which were measured in the guiding edge and the running surface of railhead.

The aim is to compare behavior of polymer-composite fishplated and control steel fishplated (type GTI and MTH-P) glued insulated rail joints in railway track and determining the time course of the deterioration process. The authors’ future task is to investigate and make diagnostics of experimental (fibre-glass reinforced fishplate) and control (steel fishplate) rail joints from straightness tests and track geometry recording car measurements and determine the state change of the joints.

Methodology

The prior field survey, the polymer-composite fishplated glued insulated rail joints for field tests were manufactured by ‘A’ type glue material (after laboratory shear tests of glue materials, 3-point-bending tests, axial pull tests). The polymer-composite joints and the assigned control joints (for comparison) were built-in the track in three different places, with three different rail profiles, in three different speeds [15, 27]. The three different places and those specifications where the polymer-composite fishplated glued insulated rail joints and the control steel fishplated glued insulated rail joints were built into the railway track are the followings.

Biatorbágy railway station:

Polymer-composite fishplated experimental insulated rail joint: 60 rail system, left transitive main track in 296+42 section, V=140 km/h. Installation date: 13‑09‑2016.

Control GTI steel fishplated insulated rail joint: 60 rail system, left transitive main track in 295+36 section (between the No. 4 and No. 8 turnouts), V=140 km/h. Installation date: 22-06-2016

Tatabánya railway station:

Polymer-composite fishplated experimental glued insulated rail joint: 54 rail system, right transitive main track in 711+68 section, V=120 km/h. Installation date: 30‑08‑2016

Control MTH-P steel fishplated insulated rail joint: 54 rail system, right transitive main track in 702+80 section, V=120 km/h. Installation date: 06‑05‑2016.

Lébény-Mosonszentmiklós railway station:

Polymer-composite fishplated experimental insulated rail joint: 60 rail system, right transitive main track between the No. 2 and No. 8 turnouts in 1598+55.80 section, V=160 km/h. Glued ballast bed, installation date: 26. 09 2016.

Control MTH-P steel fishplated glued insulated rail joint: 60 rail system, left transitive main track between the No. 6 and No. 12 turnouts in 1598+97 section, V=160 km/h. Glued ballast bed, installation date: 27‑9‑2016.

Track geometry measurements (evaluation of longitudinal settlement data):

The railway track geometry data – which is measured by FMK-004 and FMK-007 geometry recording car – and the rolling stock data were given by MÁV Central Rail And Track Inspection Ltd. and MÁV Ltd. for the time period between years 2015-2018. All three locations are on the Kelenföld-Hegyeshalom railway line, which is part of the trans-European rail freight network. That is why the FMK-007 geometry recording car does measurements on this railway line with undistorted measurement result in D1 wavelength range. During the procedure the original chord measurements are calculated by the system, it does not include any characteristic features (distortion) of any wrap arrangement, it filters out the wavelength of less than 3 meter or more than 25 meter wavelengths. In order to evaluate the change of the condition of the track, the data of the longitudinal settlement were mainly taken into account for the evaluation of the track geometric data (glued-insulated rail joints were in a straight track, so the «direction» parameter can be neglected, and the twist parameter could have been examined for too short base lengths, so it is neglected, too.

In all sites where the polymer-composite fishplated and control steel fishplated rail joints were built into the track, the data per 25 centimeter have been filtered from the middle of the joints to 100-100 meters in both directions. After the measured values were represented along the sections for both rails in 200 meter length (between years 2015-2018) and shifting the measurement data line along the longitudinal section, which shown in Figure 1.

Fig. 1. The original and corrected settlement data at Biatorbágy railway station

The measurement data of 2017 December was selected for the reference point (each dataset was corrected according to the selected base measurement). It was necessary to offset the data along the length profile because the satellite positioning is not always turned on in the geometry recording car or the accuracy is not adequate, so the sections may slip (shown in Fig. 1 below picture). Then the shifted measurement data lines along the longitudinal section were narrowed down (decreased) to 30 meter length. In this way only the analysis of the surroundings of the joints is important, and the evaluation with a rating of 200 meters does not give a true picture of the change of state of the designated control rail joints and the polymer-composite fishplated rail joints. The percentage distribution of the number of errors were examined in 30 meter long section for both of rails, separately, and the absolute value of average of the parameters regarding to both rails. The resulting values have been collected in at 15%, 50% and 85% by measurement intervals (i15%, i50%, i85% Vaszary status characteristic number with the following relation), and using the below formula a condition character can be determined [47, 48]:

These «I» condition characteristic numbers were represented in a graph (Fig 2.) which are shown the current condition parameters of polymer-composite fishplated glued insulated and control steel fishplated glued insulated rail joints.

Fig. 2. The «I» condition characteristic numbers of polymer-composite fishplated glued
insulated joint on left rail at Biatorbágy

Straightness tests

The straightness tests were made by MÁV-THERMIT Ltd. During the straightness measurement the device is placed on the rail head, and it measured the roughness of the guiding edge and the running surface of railhead on 1.0-meter base length.

After measurement the results were calculated with the «Min-Max Absolute» value (this is the highest difference between the minimum and maximum values), the «Average» values and the «Deviation» values of the guiding edge and the running surface of railhead, after it the change of data has been observed. Then the measurement results have been investigated related to the area below the curves (integer), and the areas have been compared and depicted in graph depending on the rolling gross tons.

Findings

The authors conceive statements about the condition changes of the surroundings of the measured railway joints.

During the evaluation of longitudinal settlement values the data per 25 centimeter have been filtered and were shifted along the longitudinal section to 30 meter basis length. The percentage distribution of the number of errors were examined in 30 meter long section for both of rails, separately, and the absolute value of average of the parameters regarding to both rails, and the calculated condition characteristic numbers were represented in a graph. The results obtained are as follows.

At Biatorbágy railway station: in both cases the values of condition parameters of fishplated rail joints were slightly increased since they were built into track, but this is not significant. This state change of polymer-composite fishplated joint is shown in Fig. 3.

Fig. 3. Are under the curve on 30 meter (at Biatorbágy, Polymer-composite fishplated experimental
insulated rail joint on left transitive main track).

At Tatabánya railway station: after the change, the condition of polymer-composite fishplated rail joint and the control fishplated rail joint were slightly deteriorated, the values of condition parameters «move» in parallel in both cases, but there were tamping work with Mechanised Maintenance Train (MMT) in the track. The time interval is too short before the MMT, and therefore the deterioration of the track was not able to be determined precisely.

Fig. 4. Area-based evaluation at Control MTH-P steel fishplated insulated rail joint: 60 rail system,
left transitive main track (Lébény-Mosonszentmiklós)

At Lébény-Mosonszentmiklós railway station: there was not significant change in this track, the track geometry values of the track are close to invariable, and the tangent of the trend line slightly increases. It should not be forgotten that these evaluations do not give an accurate assessment about the condition of the track because the ballast bed was glued (ballast bonding process holds ballast substrate together in many areas wherever this is required), so there can be much smaller vertical movements in these trial railway tracks.

For evaluation of railhead straightness tests the measurement results have been investigated related to the area below the curves (integer), and the areas have been compared and depicted in graph depending on the rolling gross tons in case of the roughness of the guiding edge and the running surface of railhead. The evaluation of results was rated according to the current condition of the investigated sites.

At Biatorbágy railway station: the area under the curve (integer) is increased as a function of through-rolled gross tons in case of polymer-composite fishplated joints in both rails, in case of control fisplated rail joints there are not any significant changes. The tangent of the graph depicted in case of polymer-composite fishplated rail joints was increased, in case of the control fisplated rail joints is constant.

At Tatabánya railway station: the area under the curve (integer) is slightly increased as a function of through-rolled gross tons, resulting in higher deflection values, but in the case of control rail joints, the tangent of the graph depicted is not significant while very small deterioration is appreciable in case of the current condition of polymer-composite fishplated glued insulated rail joints in both rails. Fig. 5. shows the condition parameters of polymer-composite and control steel fishplated joints at Tatabánya. (It has to be mentioned that the control rail joints at 702+80 section were replaced to new ones at 07-07-2018 because of the run-down state, which can be seen in Fig. 5 with significant low (i.e. approx. excellent) values related to 900 days.)

At Lébény-Mosonszentmiklós railway station: the area under the curve (integer) is does not change, the tangent of the graph depicted is nearly constant.

Fig. 5. Change of condition of PC and Control joints on running surface at Tatabánya

Originality and practical value

The role of the rail connections (rail joints) is to ensure the continuity of rails without vertical and horizontal ‘step’, as well as directional break [63]. Rail connections are the weak points of the track, because their fish-plates can compensate only the 60% of the moment of inertia of the rail. Wheel, during through-rolling (passing) the gap between the rail ends, hits the following (forthcoming) rail end, which is disadvantageous for the whole railway super- and substructure as well as the railway vehicle, too. Dynamic effects are much higher in case of vertical and horizontal step connections than in case of 0 ‘controlled’ one [27].

Requirements to rail connections are the followings [31]:

to bear vertical and horizontal dynamic loadings at the discontinuity of rail, and avoid or limit (maximize) the vertical and horizontal step between rail ends;

to ensure longitudinal motion of rail ends due to dilatation force without structural damages;

it should consist of few particles, and its assembly and its components’ (parts’) exchange should be quick and easy;

to fit to traffic control system, and fit the railway safety rules.

Insulated joints are special types of fishplate joints, where the rail ends are insulated from each other, in this way metallic connection can arise neither at the rail ends, nor via fishplates. It can be applied in suspended and supported joints depending on their type in case of value of sleeper space and wheel load prescribed by manufacturer. High tensile strength bolts with great forces are used to press fishplates and rail together. In this way high friction force can be achieved, it causes that the high tensile forces cannot open the rail connection. Plastic profile lining (plate) is built between rail ends. Insulated joints can be produced in plant as prefabricated elements with given length rails, as well as on the field, where they are assembled.

Conclusions

All of the experimental polymer-composite bonded-insulated rail joints in more than 2 years after their installation (the 4-5 mm gap opening in the winter of 2016/2017 at the Lébény-Mosonszentmiklós bindings and the related precautions, as well as the increased track supervision and speed limitation, they were canceled in February 2017) they were carrying the rolled 20-25 million gross tons without any problems, and it is still possible to keep in track of these stages/sections.

Except for the special case of glued ballast site at Lébény-Mosonszentmiklós railway station, where the level of the tracks is almost «set» for both the experimental and the control rail alignment, the deterioration trends in the other two locations in some of cases differed significantly the glued-insulated joints from the steel fishplated glued insulated rail joints. Cannot be released relationship or mathematically correlation about the status parameter between the elapsed time from the built-in date and the through-rolled gross tons. In addition to deterioration trends, the measurement data series also showed improvement trends. During the evaluation of the straightness data, it was concluded that the area of the glued-insulated joints in measuring the tread and the surface of the guide surface, the area below the rail ends ±0.5 m (interpreted lengthwise) varies linearly as a function of the rolled gross tons. The authors tried to find correlation between the measurement of the straightness data on the running surface and the data of the measuring geometry recording car at 25 cm per settlement data witch evaluating on area precept. Unfortunately, there was no correlation between the two evaluation methods witch is resulting from the short length of the joints.

The statement which based on the results of the authors’s track geometry analysis between 2015-2018, the authors found that – although there were no structural and geometric problems, signal and interlocking interruptions during the three-year observation period, or any other situation with glued-insulated rail joints – the glued insulated rail joints with Apatech branded, nevertheless, the polymer-composite fishplates – on the basis of the laboratory tests and railway track measurements – are not a general solution for replacing the steel fishplated glued insulated rail joints in the CWR railway tracks.

The authors think that not only static but dynamic railway track measurements of glued insulated rail joints as well as their assessment can be a very interested research direction in the future.

Acknowledgements

Thank you for the help of MÁV KFV. Ltd., MÁV‑THERMIT Ltd. And MÁV Ltd. This research is supported by the EFOP 3.6.1‑16‑2016‑00017 project.

List of reference links

      1. Курган, Д. М. До вирішення задач розрахунку колії на міцність із урахуванням нерівнопружності підрейкової основи // Наука та прогрес транспорту. – 2015. – № 1 (55). – С. 90–99.
        doi: 10.15802/stp2015/38250

      2. Advances іn Bonded Insulated Rail Joints to Improve Product Performance [Electronic resource] / K. Ciloglu, P. C. Frye, S. Almes, S. Shue // 2014 Joint Rail Conference (April 2–4, 2014, Colorado Springs, CO, USA). – Colorado Springs, 2014. – Available at: http://clc.am/k6j0lg – Title from the screen. – Accessed: 18.03.2019. doi: 10.1115/jrc2014-3746

      3. Ágh, C. A new arrangement of accelerometers on track inspection car FMK-007 for evaluating derailment safety / C. Ágh // Track Maintenance Machines in Theory and Practice – SETRAS 2018: Conference Paper (November 2018, Žilina, Slovakia). – Žilina, 2018. – Р. 7–14.

      4. Ágh, C. Egyenértékű kúposság mérése Magyarországon: Pálya és jármű kapcsolata – futási instabilitás /
        C. Ágh // Sínek világa. – 2012. – Vol. 54, No. 6. – Р. 10–13.

      5. Ágh, C. Vágánygeometriai irány- és fekszinthibák valós nagyságának értékelése húrmérési eredmények alapján / C. Ágh // Közlekedéstudományi szemle. – 2018. – Vol. 68, No. 5. – Р. 46–55.

      6. Ágh, C. Vasúti kerékpár futási instabilitása a pályadiagnosztika szemszögéből / C. Ágh // Sínek világa. – 2017. – Vol. 59, No. 6. – Р. 17–20.

      7. Albakri, M. I. Modeling and experimental analysis of piezoelectric augmented systems for structural health and stress monitoring applications: Dissertation submitted for the degree of Doctor of Philosophy in Engineering Mechanics / M. I. Albakri; The Virginia Polytechnic Institute. – Blacksburg, Virginia, 2016. – 235 р.

      8. Analysis of tapered, adhesively bonded, insulated rail joints / R. H. Plaut, H. Lohse-Busch, A. Eckstein,
        S. Lambrecht, D. A. Dillard // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2007. – Vol.
        221. – Iss. 2. – Р. 195–204. doi: 10.1243/0954409jrrt107

      9. Askarinejad, Н. Assessing the Effects of Track Input to the Response of Insulated Rail Joints Using Field Experiments / H. Askarinejad, M. Dhanasekar, C. Cole // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2012. – Vol. 227. – Iss. 2. – Р. 176–187. doi: 10.1177/0954409712458496

      10. Askarinejad, Н. Minimising the Failure of Rail Joints Through Managing the Localised Condition of Track [Electronic resource] / H. Askarinejad, M. Dhanasekar // Railway Engineering 2015. – Edinburgh, 2015. – Available at: https://clck.ru/FNZKS – Title from the screen. – Accessed: 18.03.2019.

      11. Ataei, S. Dynamic Forces at Square and Inclined Rail Joints: Field Experiments [Electronic resource] /
        S. Ataei, S. Mohammadzadeh, A. Miri // Journal of Transportation Engineering. – 2016. – Vol. 142. – Iss. 9. – Available at: http://clc.am/Jx0xKw – Title from the screen. – Accessed: 18.03.2019.
        doi: 10.1061/(ASCE)TE.1943-5436.0000866

      12. A three dimensional finite element analysis of insulated rail joints deterioration / H. M. El-sayed, M. Lotfy,
        H. N. El-din Zohny, H. S. Riad // Engineering Failure Analysis. – 2018. – Vol. 91. –
        Р. 201–215. doi: 10.1016/j.engfailanal.2018.04.042

      13. Bandula-Heva, T. M. Experimental Investigation of Wheel/Rail Rolling Contact at Railhead Edge /
        T. M. Bandula-Heva, M. Dhanasekar, P. Boyd // Experimental Mechanics. – 2013. – Vol. 53. – Iss. 6. – Р. 943–957. doi: 10.1007/s11340-012-9701-6

      14. Bongiorno, J. Track insulation verification and measurement [Electronic resource] / J. Bongiorno,
        A. Mariscotti // MATEC Web of Conferences. – 2018. – Vol. 180. – Available at: http://clc.am/L4nsTg. – Title from the screen. – Accessed: 21.03.2019. doi: 10.1051/matecconf/201818001008

      15. Mechanical requirements for joints in running rails: WG 18 / DG 11 [Electronic resource]. – 2010. – 32 p. – Available at: https://mail.google.com/mail/u/0/#inbox/QgrcJHsHlltHGdfHRzQFTtBmPxKvlzMKthg?projector=1&messagePartId=0.6 – Title from the screen. – Accessed: 22.03.2019.

      16. Chen, Y. C. Contact stress variations near the insulated rail joints / Y. C. Chen, J. H. Kuang // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2002. – Vol. 216. – Iss. 4. – Р. 265–273. doi: 10.1243/095440902321029217

      17. Cheng, Y. Transient Analysis of Electric Arc Burning at Insulated Rail Joints in High-Speed Railway Stations Based on State-Space Modeling / Y. Cheng, Z. Liu, K. Huang // IEEE Transactions on Transportation Electrification. – 2017. – Vol. 3. – Iss. 3. – Р. 750–761. doi: 10.1109/tte.2017.2713100

      18. Dhanasekar, М. Performance of square and inclined insulated rail joints based on field strain measurements / M. Dhanasekar, W. Bayissa // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2011. – Vol. 226. – Iss. 2. – Р. 140–154. doi: 10.1177/0954409711415898

      19. Dhanasekar, М. Research Outcomes for Improved Management of Insulated Rail Joints / М. Dhanasekar // Railway Engineering. – Edingburgh, United Kingdom, 2015. – Р. 1–14.

      20. El-khateeb, L. Defect-based Condition Assessment Model of Railway Infrastructure: A Thesis in the Department of Building, Civil and Environmental Engineering / Laith El-khateeb ; Concordia University. – Montreal, Quebec, Canada, 2017. – 139 р.

      21. Elshukri, F. A. An Experimental Investigation and Improvement of Insulated Rail Joints (IRJs) аnd Post Performance: A thesis submitted for the degree of Doctor of Philosophy / Fathi A. Elshukri ; The University of Sheffield. – Sheffield, 2016. – 206 р.

      22. Elshukri, F. А. An Experimental Investigation and Improvement of Insulated Rail Joints / F. A. Elshukri,
        R. Lewis // Tribology in Industry. – 2016. – Vol. 38, No. 1. –
        Р. 121–126.

      23. Elshukri, F. A. An Experimental Investigation аnd Improvement оf Insulated Rail Joints / F. A. Elshukri,
        R. Lewis // 14th International Serbian Conference on Tribology – Serbiatrib'15
        (Belgrade, Serbia, 13–15 May 2015). – Belgrade, Serbia, 2015. – P. 1–7.

      24. Experimental Investigation Into the Condition of Insulated Rail Joints by Impact Excitation / M. Oregui,
        M. Molodova, A. Núñez, R. Dollevoet, Z. Li // Experimental Mechanics. – 2015. – Vol. 55. – Iss. 9. –
        Р. 1597–1612. doi: 10.1007/s11340-015-0048-7

      25. Experimental Investigation into the Failure Behaviour оf Insulated Rail Joints [Electronic resource] / P. Boyd, N. Mandal, T. Bandula, N. Zong, M. Dhanasekar // Conference оn Railway Engineering, CORE (Brisbane
        10–12 September 2012). – Brisbane, 2012. – Available at: https://clck.ru/FMM5c– Title from the screen. – Accessed: 13.03.2019.

      26. Experimental modelling of lipping in insulated rail joints and investigation of rail head material improvements / P. Beaty, B. Temple, M. B. Marshall, R. Lewis // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2016. – Vol. 230. – Iss. 4. – Р. 1375–1387. doi: 10.1177/0954409715600740

      27. Fischer, Sz. Investigation of polymer-composite fishplated glued insulated rail joints in laboratory, as well as in field tests for dynamic effects: Research Report / Sz. Fischer, А. Németh. – Győr: Universitas-Győr Nonprofit Ltd., 2017. – 578 p.

      28. Full-scale testing of laser clad railway track; Case study – Testing for wear, bend fatigue and insulated block joint lipping integrity / S. R. Lewis, R. Lewis, P. S. Goodwin, S. Fretwell-Smith, D. I. Fletcher, K. Murray,
        J. Jaiswal // Wear. – 2017. – Vol. 376-377. –
        Р. 1930–1937. doi: 10.1016/j.wear.2017.02.023

      29. Health monitoring on line of the impedance of the glued isolating joints to improve the availability of the French railway lines [Electronic resource] / J. de Reffye, M. Antoni // 20e Congrès de maîtrise des risques et de sûreté de fonctionnement (Saint-Malo 11–13 Оctobre 2016). – Saint-Malo, 2016. – Available at: https://clck.ru/FLzVH – Title from the screen. – Accessed: 13.03.2019.

      30. Himebaugh, A. K. Finite element analysis of bonded insulated rail joints / A. K. Himebaugh, R. H. Plaut,
        D. A. Dillard // International Journal of Adhesion and Adhesives. – 2008. – Vol.
        28. – Iss. 3. – Р. 142–150. doi: 10.1016/j.ijadhadh.2007.09.003

      31. Horvát, F. Application of polymer-composite fishplates for glued insulated rail joints: Research Report /
        F. Horvát. – Győr: Széchenyi István Egyetem, 2012. – 62 p.

      32. Impact Load Response of PC Rail Joint Sleeper under a Passing Train [Electronic resource] / K. Goto, S. Minoura, T. Watanabe, C. Ngamkhanong, S. Kaewunruen // Journal of Physics: Conference Series. – 2018. – Vol. 1106. – Available at: https://clck.ru/FPHtF – Title from the screen. – Accessed: 18.03.2019.
        doi: 10.1088/1742-6596/1106/1/012008

      33. Kabo, Е. Prediction of dynamic train-track interaction and subsequent material de-terioration in the presence of insulated rail joints / E. Kabo, J. C. O. Nielsen, A. Ekberg // Vehicle System Dynamics. – 2006. – Vol. 44. – Іss. sup1. – Р. 718–729. doi: 10.1080/00423110600885715

      34. Kaewunruen, S. Railway track inspection and maintenance priorities due to dynamic coupling effects of dipped rails and differential track settlements [Electronic resource] / S. Kaewunruen, C. Chiengson // Engineering Failure Analysis. – 2018. – Vol. 93. – Р. 157–171. doi: 10.1016/j.engfailanal.2018.07.009

      35. Kaewunruen, S. Vibration attenuation at rail joints through under sleeper pads / S. Kaewunruen, А. Aikawa, A. М. Remennikov // Procedia Engineering. – 2017. – Vol. 189. – Р. 193–198. doi: 10.1016/j.proeng.2017.05.031

      36. Kurhan, D. Determination of Load for Quasi-static Calculations of Railway Track Stress-strain State // Acta Technica Jaurinensis. – 2016. – Vol. 9, No. 1. – Р. 83–96.
        doi: 10.14513/actatechjaur.v9.n1.400

      37. Mandal, N. K. An Engineering Analysis of Insulated Rail Joints: A General Perspective / N. K. Mandal,
        B. Peach // International Journal of Engineering Science and Technology. – 2010. – Vol. 2 (8). –
        Р. 3964–3988.

      38. Mandal, N. K. Stress Analysis оf Joint Bars оf Insulated Rail Joints Due to Wheel/Rail Contact Loadings /
        N. K. Mandal // The 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, CM2018 (Delft, the Netherlands, September 24–27, 2018). – Delft, 2018. –
        Р. 675–680.

      39. Mayers, А. The effect of heavy haul train speed on insulated rail joint bar strains / A. Mayers // Australian Journal of Structural Engineering. – 2017. – Vol. 18. – Iss. 3. – Р. 148–159. doi: 10.1080/13287982.2017.1363977

      40. Microstructural Characterisation of Railhead Damage in Insulated Rail Joints / C. Rathod, D. Wexler,
        T. Chandra, H. Li // Materials Science Forum. – 2012. – Vol. 706-709. –
        Р. 2937–2942. doi: 10.4028/www.scientific.net/msf.706-709.2937

      41. Monitoring bolt tightness of rail joints using axle box acceleration measurements / M. Oregui, S. Li, A. Núñez, Z. Li, R. Carroll, R. Dollevoet // Structural Control аnd Health Monitoring. – 2017. – Vol. 24. – Iss. 2. – Available at: http://clc.am/gFvDkg – Title from the screen. – Accessed: 18.03.2019. doi: 10.1002/stc.1848

      42. Nagy, R. Analytical differences between seven prediction models and the description of the rail track deterioration process through these methods / R. Nagy // Intersections. – 2017. – Vol. 14, No. 1. – Р. 14–32.

      43. Nagy, R. Analytical differences between six prediction models and the description of the rail track deterioration process through these methods / R. Nagy // Computational Civil Engineering 2017: International Symposium (Iasi, Romania, May 26, 2017). – Iasi, 2017. – Р. 31–50.

      44. Nagy, R. A vasúti pályageometria romlási folyamatának leírása / R. Nagy // Sínek világa. – 2016. – Vol. 58, No. 6. – Р. 12–18.

      45. Nagy, R. Description of rail track geometry deterioration process in Hungarian rail lines No. 1 and No. 140 / R. Nagy // Pollack Periodica. – 2017. – Vol. 12. – Iss. 3. – Р. 141–156.
        doi: 10.1556/606.2017.12.3.13

      46. Nannan, Z. Sleeper embedded insulated rail joints for minimising the number of modes of failure / N. Zong, M. Dhanasekar // Engineering Failure Analysis. – 2017. – Vol. 76. – Р. 27–43. doi: 10.1016/j.engfailanal.2017.02.001

      47. Németh, A. A polimer-kompozit hevederes ragasztott-szigetelt sínkötések (2. rész): Vasúti pályás vizsgálatok / А. Németh, Sz. Fischer // Sínek világa. – 2018. – No. 60. – Р. 12–17.

      48. Németh, A. Field tests of glued insulated rail joints with polymer-composite and steel fishplates / А. Németh, Sz. Fischer // Technika és technológia a fenntartható közlekedés szolgálatában: Közlekedéstudományi Konferencia / В. Horváth, G. Horváth, В. Gábor (szerk.). – Győr, Ma-gyarország: Universitas-Győr Nonprofit Kft., 2018. – Р. 97–105.

      49. Nichoga, V. Defect Signal Detection Within Rail Junction of Railway Tracks / V. Nichoga, I. Storozh, O. Saldan // Problemy Kolejnictwa. – 2016. – Zesz. 171. – Р. 57–62.

      50. Numerical study of wheel-rail impact contact solutions at an insulated rail joint / Z. Yang, A. Boogaard,
        Z. Wei, J. Liu, R. Dollevoet, Z. Li // International Journal of Mechanical Sciences. – 2018. – Vol. 138-139. –
        Р. 310–322. doi: 10.1016/j.ijmecsci.2018.02.025

      51. Nunez, А. Pareto-Based Maintenance Decisions for Regional Railways with Uncertain Weld Conditions Using the Hilbert Spectrum of Axle Box Acceleration / A. Nunez, A. Jamshidi, H. Wang // IEEE Transactions on Industrial Informatics. – 2019. – Vol. 15. – Iss. 3. – Р. 1496–1507. doi: 10.1109/tii.2018.2847736

      52. Peltier, D. C. Characterizing and Inspecting for Progressive Epoxy Debonding in Bonded Insulated Rail Joints / D. C. Peltier, C. P. L. Barkan // Transportation Research Record: Journal of the Transportation Research Board. – 2009. – Vol. 2117. – Iss. 1. – Р. 85–92. doi: 10.3141/2117-11

      53. Peltier, D. C. Modeling the Effects оf Epoxy Debonding оn Bonded Insulated Rail Joints Subjected to Longitudinal Loads [Electronic resource] / D. C. Peltier, C. P. L. Barkan // 2008 TRB 87th Annual Meeting: Conference Recordings (January 13–17, 2008, Washington, D. C.). – Washington, 2008. – Available at: http://clc.am/Q1cqpA – Title from the screen. – Accessed: 13.03.2019.

      54. Potential for external reinforcement of insulated rail joints / M. Gallou, B. Temple, C. Hardwick, M. Frost,
        A. El-Hamalawi // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2016. – Vol.
        232. – Iss. 3. – Р. 697–708. doi: 10.1177/0954409716684278

      55. Railway track component condition monitoring using optical fibre Bragg grating sensors [Electronic resource] / S. J. Buggy, S. W. James, S. Staines, R. Carroll, P. Kitson, D. Farrington, L. Drewett, J. Jaiswal, R. P. Tatam // Measurement Science and Technology. – 2016. – Vol. 27. – Iss. 5. – Available at: http://clc.am/OfQAnA – Title from the screen. – Accessed: 18.03.2019. doi: 10.1088/0957-0233/27/5/055201

      56. Residual Stresses in Rail-Ends from the in-Service Insulated Rail Joints Using Neutron Diffraction / V. Luzin, C. Rathod, D. Wexler, P. Boyd, M. Dhanasekar // Materials Science Forum. – 2013. – Vol. 768-769. – Р. 741–746. doi: 10.4028/www.scientific.net/MSF.768-769.741

      57. Sandström, J. Numerical study of the mechanical deterioration of insulated rail joints / J. Sandström, A. Ekberg // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2009. – Vol. 223. – Iss. 3. – Р. 265–273. doi: 10.1243/09544097jrrt243

      58. Service Condition of Railroad Corridors around the Insulated Rail Joints / N. Zong, H. Askarinejad, T. B. Heva, M. Dhanasekar // Journal of Transportation Engineering. – 2013. – Vol. 139. – Iss. 6. – Р. 643–650. doi: 10.1061/(asce)te.1943-5436.0000541

      59. Signal Processing for Non-Destructive Testing оf Railway Tracks [Electronic resource] / T. Heckel, R. Casperson, S. Rühe, G. Mook // AIP Conference Proceedings. – 2018. – Vol. 1949. – Iss. 1. – Available at: http://clc.am/jOUayQ – Title from the screen. – Accessed: 18.03.2019. doi: 10.1063/1.5031528

      60. Soylemez, E. Influence of Track Variables and Product Design on Insulated Rail Joints / E. Soylemez, K. Ciloglu // Transportation Research Record: Journal of the Transportation Research Board. – 2016. – Vol. 2545. – Iss. 1. – Р. 1–10. doi: 10.3141/2545-01

      61. Sueki, Т. Evaluation of Acoustic and Vibratory Characteristics of Impact Noise Due to Rail Joints / T. Sueki, T. Kitagawa, T. Kawaguchi // Quarterly Report of RTR. – 2017. – Vol. 58. – Iss. 2. – Р. 119–125. doi: 10.2219/rtriqr.58.2_119

      62. Sysyn, M. P. Performance study of the inertial monitoring method for railway turnouts / M. P. Sysyn,
        V. V. Kovalchuk, D. Jiang // International Journal of Rail Transportation. – 2018. – Vol. 4. –
        Р. 33–42.
        doi: 10.1080/23248378.2018.1514282

      63. Szamos, A. Structures and materials of railway superstructure / A. Szamos. – Budapest: Közdok, 1991. –
        459 p.

      64. The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works / M. Sysyn, U. Gerber, V. Kovalchuk, O. Nabochenko // Archives of Transport. – 2018. – Vol. 46. – Iss. 3. – Р. 91–107.doi: 10.5604/01.3001.0012.6512

      65. Theoretical study into efficiency of the improved longitudinal profile of frogs at railroad switches / V. Kovalchuk, M. Sysyn, J. Sobolevska, O. Nabochenko, B. Parneta, A. Pentsak // Eastern European Journal of Enterprise Technologies. – 2018. – Vol. 4, No. 1. – Р. 27–36.doi: 10.15587/1729-4061.2018.139502

      66. Ultrasonic Monitoring of Insulated Block Joints / J. Stephen, C. Hardwick, P. Beaty, R. Lewis, M. Marshall // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2018. – Vol. 233. – Iss. 3. – Р. 251261. doi: 10.1177/0954409718791396

      67. Using standard adhesion tests to characterize performance of material system options for insulated rail joints / E. Nicoli, D. A. Dillard, J. G. Dillard, J. Campbell, D. D. Davis, M. Akhtar // Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit. – 2011. – Vol. 225. – Iss. 5. – Р. 509–522. doi: 10.1177/2041301710392481

      68. Wöhnhart, A. ÖBB Infrastruktur AG: ÖBB Infrastruktur szigetelt kötés leírás. Nagyszilárdságú csa-varkötéssel készült szigetelt sínillesztések [Electronic resource] / A. Wöhnhart – 2011. – 88 p. – Available at: https://mail.google.com/mail/u/0/#inbox/QgrcJHsHlltHGdfHRzQFTtBmPxKvlzMKthg?projector=1&messagePartId=0.1. – Title from the screen. – Accessed: 22.03.2019.

      69. Yang, Z. Numerical modeling of dynamic frictional rolling contact with an explicit finite element method /
        Z. Yang, X. Deng, Z. Li // Tribology International. – 2019. – Vol. 129. – Р. 214–231.
        doi: 10.1016/j.triboint.2018.08.028

      70. Zong, N. Structural and Material Characterisation of Insulated Rail Joints / N. Zong, D. Wexler, M. Dhanasekar // Electronic Journal of Structural Engineering. – 2013. – Vol. 13. – Iss. 1. – Р. 75–87.



A. НЕМЕС1*, С. ФІшер2

1*Каф. «Інфраструктура транспорту та гідротехніка», Університет Іштвана Сечені,
пл. Університетська, 1, Д’єр, Угорщина, 9026, тел. +36 (96) 613 544,
ел. пошта nemeth.attila@sze.hu, ORCID 0000-0002-3477-6902
2*Каф. «Інфраструктура транспорту та гідротехніка», Університет Іштвана Сечені,
пл. Університетська, 1, Д’єр, Угорщина, 9026, тел. +36 (96) 613 544,
ел. пошта fischersz@sze.hu, ORCID 0000-0001-7298-9960

ПОЛЬОВІ ВИПРОБУВАННЯ клейових ІЗОЛЬОВАНИХ

РЕЙКОВИХ стиків З ВИКОРИСТАННЯМ склопластикових

І СТАЛЕВИХ РЕЙКОВИХ накладок

Мета. Основною метою статті є порівняння поведінки клейових ізольованих рейкових стиків з полімерно-композиційними й контрольними сталевими рейковими накладками (типу GTI і MTHP). Методика. Після проведення лабораторних випробувань (на зрушення клейових матеріалів, на триточковий згин, на осьовий розтяг), а також польових перевірок клейові ізольовані рейкові стики з тестованими полімерно-композиційними й контрольними сталевими накладками були вбудовані в залізничні колії з (майже) однаковими граничними умовами (рейкові профілі, параметри поперечного перерізу, стан колії й т. д.). Підсумовано результати польових випробувань клейових ізольованих рейкових стиків з полімерно-композиційними, а також контрольними сталевими накладками за період з 2015 до 2018 року з урахуванням виміряних даних колієвимірювача геометрії колії та випробувань на прямолінійність. Результати. Проведено дослідження й діагностику експериментальних (із накладками зі склопластику) й контрольних (із накладками зі сталі) рейкових стиків (тести на прямолінійність, вимірювання геометрії колії за допомогою колієвимірювача). Наукова новизна. Застосування нового типу клейових ізольованих рейкових стиків із накладками, виготовленими з полімерно-композиційного пластику під високим тиском із регульованою температурою, дозволяє усунути виникнення електричного кола на накладках і передчасний утомний вигин, а також може ізолювати кінці рейок із точки зору електропровідності. Практична значимість. Клейові ізольовані рейкові стики з полімерно-композиційними й контрольними сталевими накладками були вбудовані в залізничну магістраль № 1 (Келенфельд–Хед’єшалом) в Угорщині на трьох різних залізничних станціях. Точний час, коли клейові ізольовані рейкові стики з полімерно-композиційними накладками досягають кінця свого терміну служби, за результатами попередніх досліджень визначити неможливо. У цій статті описано дослідження процесу зношення клейових ізольованих рейкових стиків.

Ключові слова: полімер-композит; накладки; рейковий стик; залізниця; польові випробування

A. НЕМЕС1*, С. Фишер2

1*Каф. «Инфраструктура транспорта и гидротехника», Университет Иштвана Сечени,
пл. Университетская, 1, Дьер, Венгрия, 9026, тел. + 36 (96) 613 544,
эл. почта nemeth.attila@sze.hu, ORCID 0000-0002-3477-6902
2Каф «Инфраструктура транспорта и гидротехника», Университет Иштвана Сечени,
пл. Университетская, 1, Дьер, Венгрия, 9026, тел. + 36 (96) 613 544,
эл. почта fischersz@sze.hu, ORCID 0000-0001-7298-9960

ПОЛЕВЫЕ ИСПЫТАНИЯ клеевых ИЗОЛИРОВАННЫХ

рельсовых стыков С ИСПОЛЬЗОВАНИЕМ

СТЕКЛОПЛАСТИковых И СТАЛЬНЫХ рельсовых

накладок

Цель. Основной целью данной статьи является сравнение поведения клеевых изолированных рельсовых стыков с полимерно-композиционными и контрольными стальными рельсовыми накладками (типа GTI и MTHP). Методика. После проведения лабораторных испытаний (на сдвиг клеевых материалов, на трехточечный изгиб, на осевое растяжение), а также полевых проверок клеевые изолированные рельсовые стыки с тестируемыми полимерно-композиционными и контрольными стальными накладками были встроены в железнодорожные пути с (почти) одинаковыми граничными условиями (рельсовые профили, параметры поперечного сечения, состояние пути и т. д.). Авторы суммировали результаты полевых испытаний клеевых изолированных рельсовых стыков с полимерно-композиционными, а также контрольными стальными накладками за период с 2015 по 2018 г. с учетом полученных данных путеизмерителя геометрии пути и испытаний на прямолинейность. Результаты. Проведены исследования и диагностика экспериментальных (с накладками из стеклопластика) и контрольных (с накладками из стали) рельсовых стыков (тесты на прямолинейность, измерения геометрии пути с помощью путеизмерителя). Научная новизна. Применение нового типа клеевых изолированных рельсовых стыков с накладками, изготовленными из полимерно-композиционного пластика под высоким давлением с регулируемой температурой, позволяет устранить возникновение электрической цепи на накладках и преждевременный усталостный изгиб, а также может изолировать концы рельсов с точки зрения электропроводимости. Практическая значимость. Клеевые изолированные рельсовые стыки с полимерно-композиционными и контрольными стальными накладками были встроены в железнодорожную магистраль № 1 (Келенфельд–Хедьешалом) в Венгрии на трех различных железнодорожных станциях. Точное время, когда клеевые изолированные рельсовые стыки с полимерно-композиционными накладками достигают конца своего срока службы, по результататам предыдущих исследований, определить невозможно. В данной статье описано исследование процесса износа клеевых изолированных рельсовых стыков.

Ключевые слова: полимер-композит; накладки; рельсовый стык; железная дорога; полевые испытания

REFEReNCEs

  1. Kurhan, D. M. (2015). To the solution of problems about the railways calculation for strength taking into account unequal elasticity of the subrail base. Science and Transport Progress, 1(55), 90-99. doi: 10.15802/stp2015/38250 (in English)

  2. Ciloglu, K., Frye, P. C., Almes, S., & Shue, S. (2014). Advances in Bonded Insulated Rail Joints to Improve Product Performance, 2014 Joint Rail Conference. Colorado Springs. Retrieved from http://clc.am/k6j0lg doi: 10.1115/jrc2014-3746 (in English)

  3. Ágh, C. (2018). A new arrangement of accelerometers on track inspection car FMK-007 for evaluating derailment safety, Track Maintenance Machines in Theory and Practice, SETRAS 2018. Žilina. (in English)

  4. Ágh, C. (2012). Egyenértékű kúposság mérése Magyarországon: Pálya és jármű kapcsolatafutási instabilitás. Sínek világa, 54(6), 10-13. (in Hungarian)

  5. Ágh, C. (2018). Vágánygeometriai irány- és fekszinthibák valós nagyságának értékelése húrmérési eredmények alapján. Közlekedéstudományi szemle, 68(5), 46-55. (in Hungarian)

  6. Ágh, C. (2017). Vasúti kerékpár futási instabilitása a pályadiagnosztika szemszögéből. Sínek világa, 59(6), 17-20. (in Hungarian)

  7. Albakri, M. I. (2016). Modeling and experimental analysis of piezoelectric augmented systems for structural health and stress monitoring applications. (Dissertation submitted for the degree of Doctor of Philosophy in Engineering Mechanics). The Virginia Polytechnic Institе, Blacksburg. (in English)

  8. Plaut, R. H., Lohse-Busch, H., Eckstein, A., Lambrecht, S., & Dillard, D. A. (2007). Analysis of tapered, adhesively bonded, insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 221(2), 195-204. doi: 10.1243/0954409jrrt107 (in English)

  9. Askarinejad, H., Dhanasekar, M., & Cole, C. (2012). Assessing the Effects of Track Input to the Response of Insulated Rail Joints Using Field Experiments. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 227(2), 176-187. doi: 10.1177/0954409712458496 (in English)

  10. Askarinejad, Н., & Dhanasekar, М. (2015). Minimising the Failure of Rail Joints through Managing the Localised Condition of Track. Railway Engineering 2015. Edinburgh. Retrieved from https://clck.ru/FNZKS (in English)

  11. Ataei, S., Mohammadzadeh, S., & Miri, A. (2016). Dynamic Forces at Square and Inclined Rail Joints: Field Experiments. Journal of Transportation Engineering, 142(9). Retrieved from http://clc.am/Jx0xKw doi: 10.1061/(asce)te.1943-5436.0000866 (in English)

  12. El-sayed, H. M., Lotfy, M., El-din Zohny, H. N., & Riad, H. S. (2018). A three dimensional finite element analysis of insulated rail joints deterioration. Engineering Failure Analysis, 91, 201-215. doi: 10.1016/j.engfailanal.2018.04.042 (in English)

  13. Bandula-Heva, T. M., Dhanasekar, M., & Boyd, P. (2012). Experimental Investigation of Wheel/Rail Rolling Contact at Railhead Edge. Experimental Mechanics, 53(6), 943-957. doi: 10.1007/s11340-012-9701-6 (in English)

  14. Bongiorno, J., & Mariscotti, A. (2018). Track insulation verification and measurement. MATEC Web of Conferences, 180. Retrieved from http://clc.am/L4nsTg doi: 10.1051/matecconf/201818001008 (in English)

  15. Mechanical requirements for joints in running rails: WG 18 / DG 11. (2010). Retrieved from: https://mail.google.com/mail/u/0/#inbox/QgrcJHsHlltHGdfHRzQFTtBmPxKvlzMKthg?projector=1&messagePartId=0.6 (in English)

  16. Chen, Y. C., & Kuang, J. H. (2002). Contact stress variations near the insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 216(4), 265-273. doi: 10.1243/095440902321029217 (in English)

  17. Cheng, Y., Liu, Z., & Huang, K. (2017). Transient Analysis of Electric Arc Burning at Insulated Rail Joints in High-Speed Railway Stations Based on State-Space Modeling. IEEE Transactions on Transportation Electrification, 3(3), 750-761. doi: 10.1109/tte.2017.2713100 (in English)

  18. Dhanasekar, M., & Bayissa, W. (2011). Performance of square and inclined insulated rail joints based on field strain measurements. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 226(2), 140-154. doi: 10.1177/0954409711415898 (in English)

  19. Dhanasekar, М. (2015). Research outcomes for improved management of insulated rail joints. In Forde,
    M. C. (Ed.),
    Railway Engineering (pp. 1-14). Edingburgh, United Kingdom. (in English)

  20. El-khateeb, L. (2017). Defect-based Condition Assessment Model of Railway Infrastructure. (A Thesis in The Department of Building, Civil and Environmental Engineering). Concordia University, Montreal. (in English)

  21. Elshukri, F. A. (2016). An Experimental Investigation and Improvement of Insulated Rail Joints (IRJs) еnd Post Performance. (A thesis submitted for the degree of Doctor of Philosophy). The University of Sheffield, Sheffield. (in English)

  22. Elshukri, F. A., & Lewis, R. (2016). An Experimental Investigation and Improvement of Insulated Rail Joints. Tribology in Industry, 38(1), 121-126. (in English)

  23. Elshukri, F. A., & Lewis, R. (2015). An Experimental Investigation and Improvement of Insulated Rail Joints, 14th International Serbian Conference on Tribology, Serbiatrib'15. Belgrade. (in English)

  24. Oregui, M., Molodova, M., Núñez, A., Dollevoet, R., & Li, Z. (2015). Experimental Investigation Into the Condition of Insulated Rail Joints by Impact Excitation. Experimental Mechanics, 55(9), 1597-1612. doi: 10.1007/s11340-015-0048-7 (in English)

  25. Boyd, Р., Mandal, N., Bandula, Т., Zong, N., & Dhanasekar, М. (2012). Experimental Investigation into the Failure Behaviour of Insulated Rail Joints, Conference on Railway Engineering, CORE. Brisbane. Retrieved from https://clck.ru/FMM5c (in English)

  26. Beaty, P., Temple, B., Marshall, M. B., & Lewis, R. (2016). Experimental modelling of lipping in insulated rail joints and investigation of rail head material improvements. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 230(4), 1375-1387. doi: 10.1177/0954409715600740 (in English)

  27. Fischer, Sz., & Németh, A. (2017). Investigation of polymer-composite fishplated glued insulated rail joints in laboratory, as well as in field tests for dynamic effects: Research Report. Győr: Universitas-Győr Nonprofit Ltd. (in Hungarian)

  28. Lewis, S. R., Lewis, R., Goodwin, P. S., Fretwell-Smith, S., Fletcher, D. I., Murray, K., & Jaiswal, J. (2017). Full-scale testing of laser clad railway track; Case study – Testing for wear, bend fatigue and insulated block joint lipping integrity. Wear, 376-377, 1930-1937. doi: 10.1016/j.wear.2017.02.023 (in English)

  29. Reffye, J. de, & Antoni, М. (2016). Health monitoring on line of the impedance of the glued isolating joints to improve the availability of the French railway lines, 20e Congrès de maîtrise des risques et de sûreté de fonctionnement. Saint-Malo. Retrieved from https://clck.ru/FLzVH (in English)

  30. Himebaugh, A. K., Plaut, R. H., & Dillard, D. A. (2008). Finite element analysis of bonded insulated rail joints. International Journal of Adhesion and Adhesives, 28(3), 142-150. doi: 10.1016/j.ijadhadh.2007.09.003 (in English)

  31. Horvát, F. (2012). Application of polymer-composite fishplates for glued insulated rail joints: Research Report. Győr: Széchenyi István Egyetem. (in Hungarian)

  32. Goto, K., Minoura, S., Watanabe, T., Ngamkhanong, C., & Kaewunruen, S. (2018). Impact Load Response of PC Rail Joint Sleeper under a Passing Train. Journal of Physics: Conference Series, 1106. Retrieved from https://clck.ru/FPHtF doi: 10.1088/1742-6596/1106/1/012008 (in English)

  33. Kabo, E., Nielsen, J. C. O., & Ekberg, A. (2006). Prediction of dynamic train–track interaction and subsequent material deterioration in the presence of insulated rail joints. Vehicle System Dynamics, 44(sup1), 718-729. doi: 10.1080/00423110600885715 (in English)

  34. Kaewunruen, S., & Chiengson, C. (2018). Railway track inspection and maintenance priorities due to dynamic coupling effects of dipped rails and differential track settlements. Engineering Failure Analysis, 93, 157-171. doi: 10.1016/j.engfailanal.2018.07.009 (in English)

  35. Kaewunruen, S., Aikawa, A., & Remennikov, A. M. (2017). Vibration Attenuation at Rail Joints through under Sleeper Pads. Procedia Engineering, 189, 193-198. doi: 10.1016/j.proeng.2017.05.031 (in English)

  36. Kurhan, D. (2016). Determination of Load for Quasi-static Calculations of Railway Track Stress-strain State. Acta Technica Jaurinensis, 9(1), 83-96. doi: 10.14513/actatechjaur.v9.n1.400 (in English)

  37. Mandal, N. K., & Peach, В. (2010). An Engineering Analysis of Insulated Rail Joints: A General Perspective. International Journal of Engineering Science and Technology, 2(8), 3964-3988. (in English)

  38. Mandal, N. K. (2018). Stress Analysis оf Joint Bars оf Insulated Rail Joints Due to Wheel/Rail Contact Loadings, the 11th International Conference on Contact Mechanics and Wear of Rail/Wheel Systems, CM2018. Delft. (in English)

  39. Mayers, A. (2017). The effect of heavy haul train speed on insulated rail joint bar strains. Australian Journal of Structural Engineering, 18(3), 148-159. doi: 10.1080/13287982.2017.1363977 (in English)

  40. Rathod, C., Wexler, D., Chandra, T., & Li, H. (2012). Microstructural Characterisation of Railhead Damage in Insulated Rail Joints. Materials Science Forum, 706-709, 2937-2942. doi: 10.4028/www.scientific.net/msf.706-709.2937 (in English)

  41. Oregui, M., Li, S., Núñez, A., Li, Z., Carroll, R., & Dollevoet, R. (2016). Monitoring bolt tightness of rail joints using axle box acceleration measurements. Structural Control and Health Monitoring, 24(2). Retrieved from http://clc.am/gFvDkg doi: 10.1002/stc.1848 (in English)

  42. Nagy, R. (2017). Analytical differences between seven prediction models and the description of the rail track deterioration process through these methods. Intersections, 14(1), 14-32. (in English)

  43. Nagy, R. (2017). Analytical differences between six prediction models and the description of the rail track deterioration process through these methods, Computational Civil Engineering 2017, International Symposium. Iasi. (in English)

  44. Nagy, R. (2016). A vasúti pályageometria romlási folyamatának leírása. Sínek világa, 58(6), 12-18. (in Hungarian)

  45. Nagy, R. (2017). Description of rail track geometry deterioration process in Hungarian rail lines No. 1 and No. 140. Pollack Periodica, 12(3), 141-156. doi: 10.1556/606.2017.12.3.13 (in English)

  46. Zong, N., & Dhanasekar, M. (2017). Sleeper embedded insulated rail joints for minimising the number of modes of failure. Engineering Failure Analysis, 76, 27-43. doi: 10.1016/j.engfailanal.2017.02.001 (in English)

  47. Németh, A., & Fischer, Sz. (2018). A polimer-kompozit hevederes ragasztott-szigetelt sínkötések (2. rész): Vasúti pályás vizsgálatok. Sínek világa, 60, 12-17. (in Hungarian)

  48. Németh, A., & Fischer, Sz. (2018). Field tests of glued insulated rail joints with polymer-composite and steel fishplates. In В. Horváth, G. Horváth, В. Gábor (szerk.), Technika és technológia a fenntartható közlekedés szolgálatában: Közlekedéstudományi Konferencia (pp. 97-105). Győr: Universitas-Győr Nonprofit Kft. (in Hungarian)

  49. Nichoga, V., Storozh, І., & Saldan, О. (2016). Defect Signal Detection within Rail Junction of Railway Tracks. Problemy Kolejnictwa, 171, 57-62. (in English)

  50. Yang, Z., Boogaard, A., Wei, Z., Liu, J., Dollevoet, R., & Li, Z. (2018). Numerical study of wheel-rail impact contact solutions at an insulated rail joint. International Journal of Mechanical Sciences, 138-139, 310-322. doi: 10.1016/j.ijmecsci.2018.02.025 (in English)

  51. Nunez, A., Jamshidi, A., & Wang, H. (2019). Pareto-Based Maintenance Decisions for Regional Railways with Uncertain Weld Conditions Using the Hilbert Spectrum of Axle Box Acceleration. IEEE Transactions on Industrial Informatics, 15(3), 1496-1507. doi: 10.1109/tii.2018.2847736 (in English)

  52. Peltier, D. C., & Barkan, C. P. L. (2009). Characterizing and Inspecting for Progressive Epoxy Debonding in Bonded Insulated Rail Joints. Transportation Research Record: Journal of the Transportation Research Board, 2117(1), 85-92. doi: 10.3141/2117-11 (in English)

  53. Peltier, D. C., & Barkan, C. P. L. (2008). Modeling the Effects оf Epoxy Debonding оn Bonded Insulated Rail Joints Subjected to Longitudinal Loads, 2008 TRB 87th Annual Meeting: Conference Recordings. Washington. Retrieved from http://clc.am/Q1cqpA (in English)

  54. Gallou, M., Temple, B., Hardwick, C., Frost, M., & El-Hamalawi, A. (2016). Potential for external reinforcement of insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 232(3), 697-708. doi: 10.1177/0954409716684278 (in English)

  55. Buggy, S. J., James, S. W., Staines, S., Carroll, R., Kitson, P., Farrington, D., … Tatam, R. P. (2016). Railway track component condition monitoring using optical fibre Bragg grating sensors. Measurement Science and Technology, 27(5). Retrieved from http://clc.am/OfQAnA doi: 10.1088/0957-0233/27/5/055201 (in English)

  56. Luzin, V., Rathod, C., Wexler, D., Boyd, P., & Dhanasekar, M. (2013). Residual Stresses in Rail-Ends from the in-Service Insulated Rail Joints Using Neutron Diffraction. Materials Science Forum, 768-769, 741-746. doi: 10.4028/www.scientific.net/msf.768-769.741 (in English)

  57. Sandström, J., & Ekberg, A. (2008). Numerical study of the mechanical deterioration of insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 223(3), 265-273. doi: 10.1243/09544097jrrt243 (in English)

  58. Zong, N., Askarinejad, H., Heva, T. B., & Dhanasekar, M. (2013). Service Condition of Railroad Corridors around the Insulated Rail Joints. Journal of Transportation Engineering, 139(6), 643-650. doi: 10.1061/(asce)te.1943-5436.0000541 (in English)

  59. Heckel, T., Casperson, R., Rühe, S., & Mook, G. (2018). Signal Processing for Non-Destructive Testing of Railway Tracks. AIP Conference Proceedings, 1949(1). Retrieved from http://clc.am/jOUayQ doi: 10.1063/1.5031528 (in English)

  60. Soylemez, E., & Ciloglu, K. (2016). Influence of Track Variables and Product Design on Insulated Rail Joints. Transportation Research Record: Journal of the Transportation Research Board, 2545(1), 1-10. doi: 10.3141/2545-01 (in English)

  61. Sueki, T., Kitagawa, T., & Kawaguchi, T. (2017). Evaluation of Acoustic and Vibratory Characteristics of Impact Noise Due to Rail Joints. Quarterly Report of RTRI, 58(2), 119-125. doi: 10.2219/rtriqr.58.2_119 (in English)

  62. Sysyn, M. P., Kovalchuk, V. V., & Jiang, D. (2018). Performance study of the inertial monitoring method for railway turnouts. International Journal of Rail Transportation, 4, 33-42. doi: 10.1080/23248378.2018.1514282 (in English)

  63. Szamos, A. (1991). Structures and materials of railway superstructure. Budapest: Közdok. (in English)

  64. Sysyn, M., Gerber, U., Kovalchuk, V., & Nabochenko, O. (2018). The complex phenomenological model for prediction of inhomogeneous deformations of railway ballast layer after tamping works. Archives of Transport, 47(3), 91-107. doi: 10.5604/01.3001.0012.6512 (in English)

  65. Kovalchuk, V., Sysyn, M., Sobolevska, J., Nabochenko, O., Parneta, B., & Pentsak, A. (2018). Theoretical study into efficiency of the improved longitudinal profile of frogs at railroad switches. Eastern-European Journal of Enterprise Technologies, 4/1(94), 27-36. doi: 10.15587/1729-4061.2018.139502 (in English)

  66. Stephen, J., Hardwick, C., Beaty, P., Lewis, R., & Marshall, M. (2018). Ultrasonic monitoring of insulated block joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 233(3), 251-261. doi: 10.1177/0954409718791396 (in English)

  67. Nicoli, E., Dillard, D. A., Dillard, J. G., Campbell, J., Davis, D. D., & Akhtar, M. (2011). Using standard adhesion tests to characterize performance of material system options for insulated rail joints. Proceedings of the Institution of Mechanical Engineers, Part F: Journal of Rail and Rapid Transit, 225(5), 509-522. doi: 10.1177/2041301710392481 (in English)

  68. Wöhnhart, A. (2011). ÖBB Infrastruktur AG: ÖBB Infrastruktur szigetelt kötés leírás. Nagyszilárdságú csa-varkötéssel készült szigetelt sínillesztések. Retrieved from https://mail.google.com/mail/u/0/#inbox/QgrcJHsHlltHGdfHRzQFTtBmPxKvlzMKthg?projector=1&messagePartId=0.1 (in Hungarian)

  69. Yang, Z., Deng, X., & Li, Z. (2019). Numerical modeling of dynamic frictional rolling contact with an explicit finite element method. Tribology International, 129, 214-231. doi: 10.1016/j.triboint.2018.08.028 (in English)

  70. Zong, N., Wexler, D., & Dhanasekar, М. (2013). Structural and Material Characterisation of Insulated Rail Joints. Electronic Journal of Structural Engineering, 13(1), 75-87. (in English)


Received: Nov. 16, 2018

Accepted: March 27, 2019

CПрямая соединительная линия 18reative Commons Attribution 4.0 International

doi: 10.15802/stp2019/ © A. Németh, S. Fischer, 2019