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STABILITY OF MOTION OF RAILWAY VEHICLES DESCRIBED WITH
LAGRANGE EQUATIONS OF THE FIRST KIND

Purpose. The article aims to estimate the stability of the railway vehicle motion, whose oscillations are de-
scribed by Lagrange equations of the first kind under the assumption that there are no nonlinearities with discontinu-
ities of the right-hand sides. Methodology. The study is based on the Lyapunov’s stability method of linear approxima-
tion. The equations of motion are compiled in a matrix form. The creep forces are calculated in accordance with the
Kalker linear theory. Sequential differentiations of the constraint equations reduced the equation system index from 2
to 0. The coefficient matrix eigenvalues of the system obtained in such a way are found by means of the QR-algorithm.
In accordance with Lyapunov's criterion of stability in the linear approximation, the motion is stable if the real part of
all eigenvalues is negative. The presence of «superfluous» degrees of freedom, which the mechanical system does not
have (in whose motion equations there are left only independent coordinates) is not trivial. Herewith the eigenvalues
and eigenvectors correspond to these degrees of freedom and have no relation to the stability. In order to find a rule that
allows excluding them, we considered several models of a bogie, with rigid and elastic constraints of high rigidity at
the nodes. In the limiting case of high rigidities, the results for a system without rigid constraints must coincide with the
results for a system with rigid constraints. Findings. We carried out the analysis and compared the frequencies (with
decrements) and the vibration modes of a three-piece bogie with and without constraints. When analysing the stability
of the system with constraints, only those eigenvalues are of interest whose eigenvectors do not break the constraints.
The values of these numbers are limits for the eigenvalues of the system, in which rigid constraints are replaced by
elastic elements of high rigidity, which allows us to leave the Lyapunov’s criterion unchanged. Originality consists in
the adaptation of Lyapunov's stability method of linear approximation to the case when the equations of railway vehicle
motion are written in the form of differential-algebraic Lagrange equations of the first kind. Practical value. This writ-
ten form of the equation of motion makes it possible to simplify the stability study by avoiding the selection of a set of
independent generalized coordinates with the subsequent elimination of dependent ones and allows for the coefficient
matrix calculation in an easily algorithmized way. Information on the vehicle stability is vitally important, since the
truck design must necessarily exclude the loss of stability in the operational speed range.

Keywords: railway vehicle; motion stability; differential-algebraic equations

Introduction with modern concepts, loss of stability is a very
complex phenomenon, which near the critical
speeds is described by the subcritical Hopf bifurca-
tion. Up to a certain velocity vi there is only one
attractor corresponding to a straight-line motion,
then a periodic attractor appears, while the original
one remains and disappears at the velocity v, > v,.
At high velocities, chaotic attractors may appear.

Studies on the railway vehicle motion stability
have been under the spotlight since the 1950s. Loss
of stability is accompanied by the emergence of
large transverse forces that threaten the safety of
movement, which prevents from operating cars at
high speeds. Among the extensive literature devoted
to this issue, we point out [1-14]. In accordance
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There may be cases when they occur already at the
velocity v; [5]. The following methods of motion
stability analysis are used [15]:

1) Linearization of the motion equations (Lya-
punov’s stability criterion of linear approximation
[1]);

2) Quasi-linearization;

3)Galerkin-Urabe method [12, 13] (quasi-
linearization by several frequencies, a large
amount of computational work is required);

4) «Brute force» method, when one reduces the
movement speed and waits for the auto-oscillations
to disappear; to determine the unstable limit cycle,
one gradually increases the disturbance range [14];

5) Trajectory tracing method (the motion is as-
sumed to be periodic, and the equation z(0) =
z(T) is solved; it is not suitable for the study of
guasi-periodic and chaotic oscillations).

Despite the obvious unsuitability to analyze the
complex picture of the emergence and disappear-
ance of attractors, Lyapunov's stability criterion of
linear approximation retains its attractiveness due
to its simplicity and ability to do the main thing —
to evaluate the critical velocity. It is formulated for
the systems that describe ordinary differential
equations. In the present paper we will extend it to
the systems whose motion is defined by Lagrange
differential-algebraic equations (DAE) of the first
kind. Nowadays, due to the spread of standard in-
tegration programs (for example, DASSL), DAE
are increasingly used in modeling railway vehicle
oscillations, since they make it possible to do both
without dependent generalized coordinates and
without replacing rigid constraints between the car
parts with high rigidity elastic elements.

Purpose

To estimate the stability of the railway vehicle
motion, whose oscillations are described by La-
grange equations of the first kind under the assump-
tion that there are no nonlinearities with discontinui-
ties of the right-hand sides.

Methodology

The structure of the railway vehicle motion
equations is as follows:

MG+ (B+F)§+(C+K)q=0, @

(without nonlinear and non-uniform terms describ-
ing the movement along a curve). Here ¢ is the gen-
eralized coordinate vector; M is the inertial coeffi-
cient matrix; C, B are the rigidity and viscosity ma-
trices; K, F' are the matrices describing the wheel-
rail interaction. Equation (1) is obtained if we re-
move the dependent generalized coordinates from
the vector g using the equations of constraints.
When applying the Lagrange equation of the I kind,
another approach is used: instead of eliminating the
elements of the vector ¢, they are all remained, the
constraint equations are included in the full set of
equations describing the system motion, and addi-
tional unknowns A are introduced (in the amount
equal to the number of constraint equations) so that
all these equations can be solved. The result is the
following system of equations:

MG+(B+F)g+(C+K)g+L'1=0; (2
Lg=0. 3

The last expression is the equation of the con-
straints which the mechanical system is subject to.
We will assume that the matrix L is constant (de-
pends neither on time nor on system phase coordi-
nates). The system of equations (2) and (3) is line-
ar, so its solution is:

Gz ()

where the constants C; are found from the initial
conditions. The indices p; together with nonzero
eigenvectors v, |; are solutions of the equation

(Mpf+(B+ FL)pj+(C+K) LTJU]):O’(‘D
j

It is possible to understand whether motion is
stable or not, by the sign of the real part of the val-

ues p; — if there are positive numbers among them,

the motion is stable. It is inconvenient to search for
numbers p;, equating the determinant of the left

matrix to zero. Instead, we reformulate the prob-
lem so that the indices p; turn out to be eigenval-

ues of a certain matrix. From (2) it follows that

g=—M ' (B+F)g-M (C+K)qg-M™'L"1
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Multiplying the resulting expression by L and us-
ing the fact that Lq=0, we get

(LM ') 2=—LM M [(B+F)g+(C+K)q]

The matrix LM L™ is non-degenerate (if the con-
straint coefficient matrix L has less rows than col-
umns, and the rank is equal to the number of rows,
which we assume), therefore

h=—(LM7LT) LM (B + F)g+(C+K)q]

Substituting this expression into the original equa-
tion, we get

G=-QM(B+F)4-QM*(C+K)q.

-1

Q=1—M-1LT(|_M-1LT) L.

Thus, the vector of phase coordinates (¢ q)T
satisfies the differential equation

dt\qg q
A_[~QM “(B+F) -QM*(C+K)
1 .
The eigenvectors of the matrix A4, corresponding to
the eigenvalues p;, has the form(p ivi y-)T. Let

j
us consider how they are related to the eigenvalues
and eigenvectors of the original system with con-
straints, that is, if they satisfy the equation (4) with
a suitable choice of the vector of Lagrange multi-
pliersl;. We will need an obvious correlation

LQ =0. Multiplying the left expression by L

Py =—OM [ (B+F)p;+(C+K) |y, (%)
we will get pJ?LyJ- =0.
Therefore, for nonzero p; the vector y; satisfies
the constraint equation Ly; =0. Equation (4) is

easy to rewrite as
[ijg +(B+F)p;+(C+ K)]—

U (LML) P Lp?y, =0

Thus, with nonzero p; the vectors v; satisfy the

equation (4) with

I =—(LMLT) " Lp%,

It is not clear whether the vectors y; satisfy the
equation (4) for p; =0, but, since these solutions

correspond to constant processes that are of no in-
terest, we will not deal with them.

Thus, the stability condition of the system with
constraints is as follows:

(Vi,p; #0)Rep; <0

where p; are eigenvalues of matrix 4.

Let us apply the above theory to the study of
stability, natural frequencies and vibration modes
of a simplified mechanical system consisting of
half a car body and a 3-piece bogie, on which it
rests (Fig. 1).

v (%y =
v
U{IQ % !

Fig. 1. 3 — piece bogie
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We consider the motion only in the horizontal
plane. The system consists of (half) the body with
a bolster, two side frames and two wheel sets. The
body and the bolster are connected by a hinge in
the center plate arrangement, the bolster with side
frames and the side frames with wheel sets — by
elastic elements that prevent relative translational
movements in the longitudinal and transverse di-
rections, as well as relative angular movements of
hunting of the interacting bodies.

There are no dissipative elements in the system.
The degrees of freedom are listed in Table 1. x, v,
y indicate small movements of recoiling, swaying
and hunting, for wheel sets the coordinate ¢ is
chosen so that (—¢) is a small deviation of the
angular velocity of wheel set rotation relative to its
axis from the value V /r (V is the car velocity, 7 is
the wheel radius), corresponding to the undisturbed
motion.

Table 1
Degrees of freedom and generalized coordinates
Body Degrees of freedom Gener_alized
coordinates
Body with bolster x(®D) |y (0d) (0D 4. Oy, Us
Left side frame ( j=1) xS0y L0 Uz, U5 Qg
Right side frame ( j=2) x$D |yl 0 g, dg» o
First wheel set (m=1) (WS yws) WSy, () gy L Oy
Second wheel set (m=2) x§S) 1y (W) - p(S) W) gy, Oy
We will be interested in how the frequencies (el) T
and forms of oscillations of the system without —6A™ =89 Cq. (6)

constraints (SF) and systems, whose displacement
is subject to the following restrictions, correlate:

SCX — it is prohibited to move the bolster rela-
tive to the side frames (in the spring suspension
openings) in the longitudinal direction;

SAJ — it is prohibited to move the pedestal
openings of the side frames relative to the wheel
set axle journals (side frames are pivotally con-
nected to the wheel sets).

As for system parameters, the meaning of the
notation for rigidity coefficients and basic dimen-
sions is clear from Figure 1: the letters m, / with
corresponding indices denote the masses and cen-
tral moments of body inertia, the coefficients in the
expressions for the interaction forces are explained
below, the capital letters X, ¥, ¥ denote the force
components and the system body interaction force
moments. Without giving a complete derivation of
the expressions for the matrices M, L, etc, let us
dwell only on certain points that may be of me-
thodical interest. The elements of the matrix C are
coefficients for the products of generalized coordi-
nates and their variations in the expression for the
virtual work of forces in elastic elements

Let us consider the contribution C® to the ma-
trix C from the elastic elements that are in axle
boxes. The components of the displacement of the
side frame pedestal opening relative to the wheel
set axle box are combined into a vector

)T
They are linear combinations of the generalized
coordinates

(b)

(b) _ [ y(b) (b)
r-mj - (ij ymj "4 mj

(ws)

X =X — (x4 + Jsyr

b f Pq f WS
b f Ws

This means that it is possible to choose such matri-
ces Dr(n?) with constant coefficients that

b b
rrr(lj) = Dr(nj)q :
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The force components in the elastic element are
proportional to the vector r”, F{” =-C{”r{?,
c®

Cl(b) _ C§b)

c

The virtual work of the forces Fn(]f) is equal to
(el,b) _ (0)T =(b)
SACD =3 o Ry (7)

Comparing the expressions (6) and (7), we get:
C= zm‘j DYTCPDY + (contributions from other

elastic elements).

In order to prohibit linear movements of the
pedestal openings of the side frames relative to
wheel set axle boxes, it is necessary to require the
fulfillment of the conditions:

x® =

=0

There are 8 rows in the L matrix, which we get
by writing the first two rows of each matrix under
each other. Thus, the compilation of a system of
equations describing the motion of a mechanical
system with constraints does not practically require
additional calculations — in our case, the matrices

DY were written out at the stage of working with

the system without constraints.

The wheel-rail interaction is described by
Kalker linear theory [16 par. 2.2.2] with the fol-
lowing simplifications:

1) spin is neglected;

2) the coefficients C;;, C,, for the longitudinal
and transverse directions are considered equal to
3.90.

The expression for longitudinal sliding addi-
tionally contains terms proportional to the veloci-

ties X", o),

m

- (ws) (ws)

X 41l 4 Jspr Yo |
Exmj = v =

The expression for transverse sliding retains the
usual look

y(ws) (ws)
m ws
3 ymj vV Ym

Findings

Let us consider the results of the calculation of
the eigenvalues and eigenvectors describing the 3—
piece bogie oscillations. Our goal is to understand
how the eigenvalues and eigenvectors of SF system
with constraints and SCX and SAJ systems without
constraints are related. We expect that the results for

SF withC{” — o0, C!” — o0 will tend to the re-

sults for SAJ, and the results for SF with C{” — o

— to the results for SCX. The subject of the study
will be the confirmation of this expectation and a
detailed description of the limiting transition nature.
The eigenvalues of the matrix A for the SF and
SAJ systems are listed in Table 2. The system pa-
rameters correspond to the 4-axle car loaded up to
deadweight capacity on 18-100 bogies (with an axle
load of 23.5 tf). The motion speed V =100 km/h.
The eigenvalues were ordered by the QR algo-
rithm, so they can be compared only by values.
Even without analyzing the eigenvectors, it is clear
that the numbers with j=9, 11, 14 of the SAJ sys-

tem are the limits for the eigenvalues
j=25, 27, 29 of the SAF system. It seems plau-

sible to assume that large negative numbers of one
system go into large negative numbers of the other
system, both systems have five such numbers, but
the correspondence between them is not obvious. It
is not quite clear which of the numbers of the SF
system goes into the number —6.29+335i of the
SAJ system. The numbers j=9, ..., 24 of SF, ex-

cept for one pair, apparently correspond to the side
frame oscillations on the high rigidity elastic ele-
ments in the axle boxes, since these numbers have
a large imaginary component.

The study of eigenvectors confirms the conclu-
sions made and allows for some refinements. Let
us consider the SAJ system with hinges in axle
boxes. Equations of constraints do not violate the
first 15 eigenvectors:

1, 2) non-physical solutions, which appeared

due to the fact that there are no variables @ in

the equations of motion, there are only their
derivatives;

3, 4, 13) extremely rapidly decaying solutions
describing the motion of wheel sets against
pseudo-slip forces (for example, bogie swaying
without hunting);
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5, 6) bolster hunting oscillations;

7, 8) the same as 3, 4 — rotation of the wheel
sets about their axis without longitudinal
displacement;

9, 10) body swaying oscillations (wheel sets
also have swaying and hunting oscillations, but the
ratio of amplitude values y and y is less by about

20% than Klingel solution provides);

11, 12) joint oscillations of the wheel set
swaying and hunting (amplitude of body
oscillations is less than with the forms 9 and 10);

14, 15) bogie oscillations under the body in the
longitudinal direction (spring suspension sets are
deformed in the longitudinal direction).

Table 2
Eigenvalues for systems SF, SAJ, and SCX
i pj. e i pj. e
SF SAJ
1,2 0 1,2 0
3 -1800 3 -990
4 -1640 4 -1140
56 -5610 56 —6.29+335i
7 -1790 7 -5040
8 -1650 8 -3900
9,10 —56.5+£585i 9,10 —2.33+17.3i
11,12 —38.2+554i 11,12 1.24+11.9i
13,14 —11.9+314i 13 -1440
15,16 —34.1+874i 14,15 -0.21+£91.1i
17,18 +857i 16, ..., 34 0
19, 20 —3.64+638i SAJ + SCX
21,22 +542i 1,2 0
23,24 —3.89+315i 3 —4000
25, 26 -2.31£17.1i 4 -3900
27,28 1.25+11.9i 5 -891
29, 30 —-0.21+88.6i 6 -1440
31 -148 7 ~1440
32,33 0 8,9 —2.33+17.,3i
34 -1.14 10,11 1.24+11.9i
12, ...,34 0

For all these vectors, one can find the corre-
sponding eigenvectors of the SF system with close
values of the components. Some vectors y; are

shown in Table 3. The vectors y,;, v,;, for a bogie

without constraints, with large rigidity of elastic
elements in the axle boxes are almost coincide with

the vectors vg, v,;, for a bogie with hinges in box-
es. The vector y, (SF) describes the longitudinal
oscillations of the side frames relative to the wheel
sets, which is incompatible with the constraints to
which the SAJ system is subordinate, and it is im-
possible to find a corresponding vector among the
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eigenvectors of the latter. The bogie movement is
unstable, the eigenvalues p,; (SF) and p;; (SAJ)
have a positive real part. Wheel sets perform self-
oscillations of hunting and swaying (the ratio be-
tween the amplitudes y and y is as in the Klingel

solution), and the body swaying is twice as large as
wheel set swaying. Figure 2 shows how the com-
ponents of the corresponding eigenvector change

as rigidity changes C® =C{® = C§b) .

1.0~
Ulbd)
______ (sb)
Y
1Y ] SN SRR TR SN S—— n
0.6
04—t Tl
0.2
0 | I | | | |
1 2 ) 10 20 50 100
C® MN/m
Fig. 2. The principal mode of unstable motion
Table 3
Components of eigenvectors v
Compo- SF SAJ
nent i=9 i=13 i=27 =5 j=11
|y| argy |y| argy |;/| argy |y| argy |7| argy
x(bd)
y(bd) 0.67 -1.47 0.67 -1.47
y ) 0.30 1.19 0.98 -1.61 0.13 0.42 1.00 -1.59 0.13 0.40
Xl(sf) 0.65 -1.67 0.13 -2.15 0.13 0.42 0.04 2.82 0.14 0.40
yl(sf) 0.06 -2.82 0.34 -1.26 0.34 -1.26
i
x§3f) 0.65 1.47 0.13 0.99 0.13 -2.73 0.04 -0.33 0.14 -2.74
ygsf) 0.06 -2.82 0.34 -1.26 0.34 -1.26
Za
Xl(ws)
yl(ws) 0.02 1.29 0.33 -1.25 0.34 -1.26
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Continuation of the table 3

Compo- SF

SAJ

nent j=13

j=27 j=11

7| argy 7] argy

1 argy 7]

argy 7| argy

(ws)

%)

V’l(WS) 0.16

Xéws)

ygws) 0.02

2.88 0.06 2.80

1.29

(ws)

?;

l/,éws) 0.16 2.88 0.06 2.80

If a rigid longitudinal constraint in the spring
suspension is added to the hinges in the axle box
(Table 2, column SAJ + SCX), then the oscillation
patterns 5, 6, 14, 15 in the SAJ system, which are
accompanied by deformations of the spring groups
in the longitudinal direction will disappear and
four more eigenvectors, corresponding to zero ei-
genvalues and violating equations of constraints,
will be. Other eigenvalues will change slightly.

Originality and practical value

Originality consists in the adaptation of Lya-
punov's stability method of linear approximation to
the case when the equations of railway vehicle mo-
tion are written in the form of differential-algebraic
Lagrange equations of the first kind. This written
form of the equation of motion makes it possible to
simplify the stability study by avoiding the selec-
tion of a set of independent generalized coordi-
nates with the subsequent elimination of dependent
ones and allows for the coefficient matrix calcula-
tion in an easily algorithmized way. Information on

0.13

0.33

0.13

0.42 0.04 2.82 0.13 0.40

-1.25 0.34 -1.26

0.42 0.04 2.82 0.13 0.40

the vehicle stability is vitally important, since the
truck design must necessarily exclude the loss of
stability in the operational speed range.

Conclusions

1. An effective method for studying the stabil-
ity of railway vehicle motion, described by the La-
grange equations of the first kind, has been pro-
posed. Stability criterion — the real numbers of ex-
ponential functions that satisfy the equations of
motion — should not be greater than zero. The indi-
cators themselves can be found as eigenvalues of a
certain matrix A, depending on the matrices of
physical parameters M, B, F, C, K and the matrix of
constraint coefficients L, using the QR algorithm
[2, chapter 4].

2. The eigenvectors of this matrix, correspond-
ing to nonzero eigenvalues, satisfy the equations of
constraints. The advantage of the proposed method
is the easy algorithmization of the motion equation
derivation (no need to choose independent general-
ized coordinates).
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CTIMKICTb PYXY 3AJI3BHUYHUX EKIMAXKIB, AKUI ONIUCYIOTh
PIBHAHHSA JIATPAH/KA | POAY

Merta. Y ctarTi He0OXiTHO OWIHUTH CTIHKICTh PyXy 3aJII3HWYHHX €KiNaXiB, KOJIMBAHHS SKUX OMHMCAHI piBHSIH-
Hamu Jlarpanxa | pony, B mpumryiieHHi, o BiJICYTHI HEJIIHIHHOCTI 3 po3pHBaMH NpaBuX 4acTHH. Meroamka. 3a
OCHOBY TNPHHHATO METOZ JOCITIDKEHHS CTIMKOcTi pyxy JlsmyHoBa 3a siHIMHNM HaOmKeHHSM. PIBHSHHSA pyXy
CKJIaIeHO B MaTpuuHiil ¢popmi. Crun Kpina oO4McIeHi y BiAOBIAHOCTI 3 JiHIHHOI Teopieto Kankepa. [TocninoBHu-
MU audepeHIiIOBaHHsIMY PiBHSAHB 3B’s3KIiB 1HACKC CHCTEMH PIBHSAHB 3HIDKeHHH 3 2 mo 0. BrmacHi ymcna martpwii
KOE(QIIi€HTIB OTPUMAHOI TAKUM YHHOM CHCTEMH 3HalijieHi 3a jonomororw QR-anropurmy. BinmnmoBigHo 10 KpuTepito
JlsimyHOBa MpO CTIHKICTH 3a JIHIWHUM HaOJMKEHHSIM PyX CTIMKMH, SKIIO Y BCIX BIACHHX YMCEN AiHCHA 4acTHHA
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HeraTuBHA. HeTpHBIiaIEHUM € HAasBHICTD «3aliBUX» CTYIIEHIB CBOOOIH, IKUX HEMAE Y MEXaHiqHOI cHcTeMH (B ii piB-
HSHHSIX PYyXy 3aJHIIIIN TiUTBKA He3aJeXXHI KoopanHath). LluM crymeHsM cBoOOIM BiAIOBINAarOTh BIIACHI YHCIHA i
BJIACHI BEKTOPH, II[0 HE MAIOTh BiAHOIIEHHS A0 cTiiikocTi. 11{00 3HaTH MpaBwiIo, MO J03BOJSE X BUKIIOUYUTH, MU
PO3TILIHYIN KiJTbKa MOJAEJEH Bi3KiB, i3 JKOPCTKUMU 1 MPYKHUMH 3B’ sI3KaMH BEITUKOI JKOPCTKOCTI Y By3iax. Y TpaHH-
YHOMY BUITAKy BEJIHMKUX JKOPCTKOCTEH pe3yJbTaTH AJsl CHCTEMHU Oe3 )KOPCTKHX 3B’SI3KiB IIOBHHHI CIIBIIACTHU 3 pe-
3yJIbTaTaMy JJIsl CHCTEMH 3 )KOPCTKUMH 3B’si3kamu. PesyabTarn. [IpoBeneHo anaii3 i 3icTaBieHi 4acToTH (3 AeKpe-
MEeHTOM) 1 (opMH KONMBaHb 3-€IEMEHTHOTO Bi3Ka 31 3B’si3kamMu 1 0e3 Hux. [Ipu aHami3i crilikocTi cucTemu 3i
3B’SI3KaMH CTAHOBJIATH IHTEpEC TUIBKU Ti BJIACHI YMCIIA, BJIACHI BEKTOPH SIKMX HE MOPYLIYIOTH 3B’SI3KiB. 3HAYCHHS
LMX YUCEN € MEKaMH JJIsl BIACHUX YHCEJ CUCTEMHU, B SIKiH JKOPCTKI 3B’I3KH 3aMiHEHI IPYKHUMH €JIEMEHTaMH BEJIH-
KOT JKOPCTKOCTI, IO JIO3BOJISIE 3aJIMIINTH KpuTepill JIsmyHoBa He3MiHHMM. HaykoBa HOBU3HA TOsirae B ajanTarii
METOJY JOCIiIKEHHs CTiKOCTI pyXy JlsmyHOoBa 3a TiHIHHAM HaONMKEHHAM J0 BUIIAIKY, KOJU PiBHSHHS pyXy 3alli-
3HAYHMAX CKiMaXiB 3ammcafi B Gopmi nudepeHmiifHo-anreOpaidvanx piBHAHb Jlarpamka I porny. [IpakTuyHa 3Ha-
yuMicTh. 3a3HaueHa (opMa 3amuCy PIBHSAHHS PyXy JO3BOJISIE CIIPOCTHUTH JOCIIKEHHS CTIHKOCTI 3a paXyHOK Bif-
MOBH BiJl BUALJICHHS O€3JIi4l He3aJeKHIX y3aralbHEHUX KOOPIUHAT i3 HACTYITHIM BHKIIOUCHHSAM 3AJICKHUX 1 TOITY-
cKae OOYHCIICHHS MaTPUIll KOSQIIIEHTIB JIETKO alrOPUTMI30BaHUM criocoOoM. [Hpopmaris mpo CTIHKICTh eKiMaxiB
YKpail Ba)kIMBa, OCKUTBKM KOHCTPYKLIiS XOJOBHX YaCTHH IOBUHHA B 00OB’S3KOBOMY HOPSAKY BUKIIOYATH BTpaTy
CTIMKOCTI B €KCIUTyaTali{HOMY J[iara30Hi HIBHKOCTEH.
Knouoei cnosa: 3amizsHUYHUN eKinax; CTIHKICTb pyxy; qudepeHiiHo-anreOpaiuHi piBHIHHS
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YCTOMUYUBOCTH ABUKEHUSA KEJE3HOJIOPOXHBIX DKUIIAXKENM,
OIIMCBIBAEMOI'O YPABHEHUAMMU JIAT'PAHXA I POJJA

Ilean. B crarbe HE0OXOIMMO OLIEHUTH YCTOWYNBOCTD JIBM)KEHHS JKEIE3HOJOPOXKHBIX IKHUIAXKEH, KoeOaHHs KO-
TOPBIX OMHKCaHbl ypaBHeHUsIMH Jlarpamka | posa, B mpeAIonokeHHH, 4TO OTCYTCTBYIOT HETMHEHHOCTH C pa3pbiBa-
MU TIpaBBIX yacTed. MeToauka. 3a OCHOBY NPHHAT METOJ HCCIIEIOBaHUSA yCTOWIMBOCTH ABIDKEHHs JIsmyHOBa mo
JIMHEHHOMY NPUOJIMKEHUI0. YpaBHEHHMs JIBH)KEHHsI COCTaBJIeHbI B MaTrpu4HOW (opme. CHilbl KpUIa BBIYHCICHBI
B COOTBETCTBHU C JIMHEHHO# Teopueil Kankepa. [TocnenoBarensHpiMu TuddepeHMpoBaHUsIME YpaBHEHNH CBsI3eil
HHJIEKC CHCTEMBbI ypaBHeHUI moHumxkeH ¢ 2 10 0. CoOCTBEHHBIC YKCIa MATPHUIBI KO(GGHUIIMEHTOB MOJIYYCHHOW Ta-
KM 00pa3oM cUCTeMbI HaiifieHbl ¢ moMolsio QR—anropurma. B cootBercTBum ¢ kputepuem JlsmnyHoBa o0 ycroid-
YHBOCTH IO JMHEHHOMY MPUOIMKEHUIO ABMKCHHE YCTOWYHMBO, €CIIM y BCEX COOCTBEHHBIX YHCEJN ACHCTBUTEIbHAS
4acTh OTpUIATeNIbHa. HeTpuBHANBHBIM SIBISIETCS HAJIMYKE (JIMIIHUX)» CTETIeHEH cBOOObI, KOTOPBIX HET Y MEXaHH-
4ecKoil cucteMsl (B ee ypaBHEHHSX JIBM)KCHHS OCTABHJIM TOJIBKO HE3aBUCUMBIC KOOPIUHATHI). DTUM CTEICHIM CBO-
00/l COOTBETCTBYIOT COOCTBEHHBIEC YHCIIA U COOCTBECHHBIE BEKTODBI, K YCTOMYMBOCTH OTHOIICHHS HE MMEIOIIHE.
UroOb! HAlTH MPAaBMIIO, IO3BOJISIONIEE UX UCKIFOUUTH, MBI PACCMOTPEIN HECKOJIBKO MOJIETIEH TEIEKKH, C KECTKIMHU
U YIPYTUMH CBS3IMH OOJIBIION XKECTKOCTH B y371axX. B mpenensHoM citydae GONBIINX KECTKOCTEH pe3yNbTaThl JUIs
CHUCTEMBI 0€3 MECTKHX CBsS3€H MOJDKHBI COBIACTh C pE3yJNbTaTaMU IS CHCTEMBI C JKECTKUMH CBSI3SIMH.
PesyabTathl. [IpoBeeH aHa M3 U COMOCTABJICHBI YaCTOTHI (C AeKpeMeHTamMu) U (POPMBI KojieOaHuid 3—371eMEHTHO I
TEJEXKKHU CO CB3sIMH U 6e3 Hux. [Ipn aHamm3e yCTOMYMBOCTH CHCTEMBI CO CBSI3IMH MPEICTABISIOT HHTEPEC TOJIBKO
Te COOCTBEHHBIEC YHCIIa, COOCTBEHHBIE BEKTOPHI KOTOPHIX HE HAPYIIAIOT CBSA3eH. 3HAUEHHUS ATUX UYHCEN ABISIOTCS
mpeaenamMu Al COOCTBEHHBIX YHCEN CHCTEMBI, B KOTOPOH JKECTKHE CBS3HM 3aMEHEHBI YIIPYTUMH dJIEMEHTaMH 00JIb-
LIOH JKECTKOCTH, YTO II03BOJIIET OCTaBUTh KpuTepuil JlsanyHoBa Hen3MeHHbIM. HayuHast HOBM3HA COCTOUT B ajarl-
TaIlMU METOJIa CCIIEJ0BAHUS YCTOMYMBOCTH ABMKEHUs JISIyHOBa 1O JIMHEHHOMY NPHOIMKEHUIO K CIydaro, Korjaa
YpaBHEHUsI JIBI)KEHHS >KEJIe3HOJOPOXHBIX JKHIIaKeH 3amucaHel B (Gopme auddepeHnnarbHo -anredpanaeckux
ypaBHenwii Jlarpanxa | pona. [IpakTHyeckasi 3HAYNMOCTb. YKazaHHasl (OpMa 3alMCH YPABHEHUS IBH)KEHHS 1103~
BOJISIET YIPOCTUTH MCCIIEJOBAaHWE YCTOWYMBOCTH 3a CUET OTKas3a OT BBIJEJICHHWS MHOXKECTBAa HE3aBHCHUMBIX 0000-
IIEHHBIX KOOP/AWHAT C MOCJIEAYIONMM HCKIIOUCHHEM 3aBUCHMBIX M JIOIYCKAET BBIYMCIEHUE MAaTPHIBI KO PUIIHI-
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€HTOB JIETKO aJTOPUTMH3UPYEMbIM criocoboM. MHbopMarmst 06 yCTOHYHBOCTH SKUTIAXKEH KpaiiHe Ba)KHa, MOCKOIIb-
Ky KOHCTPYKIIUS XOJIOBBIX YacTel OJDKHA B 0053aTEIBHOM MOPSIKE HCKIIOYATh IOTEPI0 YCTOWYUBOCTH B IKCILTya-
TAIlMOHHOM JTaIla30HE CKOPOCTEH.

Kniouegvie cnosa: xene3HONOPOXKHBIN HKUMAXK; yCTOHYUBOCTD ABMKEHHS; AudepeHInaIbHO-anre0pandecKue
ypaBHEHHUS
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