ISSN 2307–3489 (Print), ІSSN 2307–6666 (Online)
Наука
та прогрес транспорту. Вісник
Дніпропетровського
національного університету залізничного
транспорту, 2018,
№ 5 (77)
ЕКОЛОГІЯ НА ТРАНСПОРТІ
екологія на ТРАНСПОРТі
M. M. BILIAIEV1*, O. V. Berlov2*, I. V. KALASHNIKOV3*, V. A. KOZACHYNA4*
1*Dep.
«Hydraulics and Water Supply», Dnipropetrovsk National University
of Railway Transport named after Academician V. Lazaryan,
Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 273 15 09,
e-mail water.supply.treatment@gmail.com, ORCID
0000-0002-1531-7882
2*Dep. «Life Safety», Public higher
education institution «Prydniprovska State Academy of Civil
Engineering and Architecture», Chernyshevskyi St., 24а, 49600, tel.
+38 (056) 756 34 57,
e-mail berlovalexandrr@gmail.com, ORCID
0000-0002-7442-0548
3*State Enterprise «Design and Exploration
Institute of Railway Transport of Ukraine «Ukrzaliznychproekt»,
Konariev St., 7, Kharkiv, 61052, tel. +38 (057) 724 41 25,
e-mail
uzp38@ukr.net, ORCID 0000-0002-2814-380X
4*Dep. «Hydraulics and
Water Supply», Dnipropetrovsk National University of Railway
Transport named after Academician V. Lazaryan, Lazaryan St., 2,
Dnipro, Ukraine, 49010, tel. +38 (056) 273 15 09,
e-mail
v.kozachyna@gmail.com, ORCID 0000-0002-6894-5532
calculation
OF «vulnerability» zone
IN CASE OF TERRORIST ATTACK WITH
CHEMICAL
AGENTS
Purpose.
The work involves the development of a numerical model for
calculating the «vulnerability» zone of a possible terrorist
attack objective with the use of a chemical agent in a built-up
environment. The «vulnerability» zone is a territory near the
attack objective, where the emission of a chemical agent during the
attack will lead to undesirable consequences. The emission of a
chemical agent outside the «vulnerability» zone will not create a
dangerous concentration near the attack objective. Methodology.
To solve this problem, we use the
equation for the velocity potential, on the basis of which we
determine the wind stream velocity field, and the equation adjoint to
the equation of mass transfer in the atmospheric air of the chemical
agent emitted in the event of a terrorist attack. During simulation,
we take into account the uneven wind stream velocity field,
atmospheric diffusion and the rate of emission of a chemically
hazardous substance. For the numerical integration of the velocity
potential equation, we use the method of A. A. Samarsky. For
numerical solution of the adjoint equation, we introduce new
variables and use an implicit difference splitting scheme. The
peculiarity of the developed numerical model is the possibility of
operative estimation of the «vulnerability» zone near a possible
attack objective. Findings.
The developed numerical model and computer program can be used for
scientifically grounded assessment of the «vulnerability» zone near
significant facilities in the event of possible attacks with the use
of chemical (biological) agents. The constructed numerical model can
be implemented on computers of small and medium power, which allows
it to be widely used to solve the problems of this class when
developing the emergency response plan. The results of the
computational experiment are presented, which allow us to evaluate
the possibilities of the proposed numerical model.
Originality. An effective numerical model is proposed for
calculating the «vulnerability» zone near the facility, which may
be the target of a terrorist attack with the use of a chemical agent.
The model is based on the numerical integration of the velocity
potential equation and the equation adjoint to the equation of mass
transfer of a chemically dangerous substance in the atmosphere.
Practical value. The developed model can be used to organize
protective actions near the target facility of a possible chemical
attack by terrorists.
Keywords: terrorist attack; chemical pollution; «vulnerability» zone, adjoint equation; numerical simulation; air contamination
Introduction
Recently, special attention has been drawn to the tasks related to the assessment of the consequences of possible terrorist acts with the use of chemical (biological) agents [1, 2, 4–14]. Within the framework of this problem, it is possible to single out an extremely important and specific task – determining the «vulnerability» zone for the terrorist chemical attack objectives. The «vulnerability» zone is a territory near the attack objective, where the emission of a chemical agent during a terrorist act will lead to undesirable consequences at the facility. The release of a chemically hazardous substance outside this zone will not create a «problem» at the attacked facility.
Mathematically, this provision can be expressed as follows: at the objective of the potential terrorist chemical attack, up to the time point, the concentration of the hazardous substance must not exceed a certain dangerous value :
. (1)
Here is the concentration which results in a certain severity affects for a person.
It should be noted that the solution to this problem becomes quite complicated if the emission of a chemical agent is considered in a built-up environment – which is, in fact, the most obvious situation in the case of a chemical attack. As a «zero» approximation, one can neglect the influence of specific buildings and other facilities on the formation of chemical contamination area and use, for example, Gaussian models to solve the problem, as was done in the «ALOHA» code. For a more detailed assessment of the the contaminated areas, it is necessary to make calculations taking into account the influence of facilities on the formation of concentration fields. Such detailing can be different and determined by a number of factors (for example, availability of a sufficient amount of input information for modeling, available software package for calculations, time for obtaining results, etc.). The models used in practice for assessing the consequences of a terrorist act are based on solving the «direct» problem of mass transfer – i.e. direct solution of the equation of convective-diffusion dispersion of impurities in the atmosphere at a given place of emission of a hazardous substance. However, the use of such models requires considerable time to determine the «vulnerability» zone, since the solution to the problem is found by going through different emission points of a chemical agent during a possible terrorist attack, i.e. the problem is solved by the trial-and-error method. Using this approach requires a lot of time to obtain the desired result. In this regard, the actual problem is the development of effective methods for solving the «vulnerability» zone determination problems for various facilities in the context of the growing terrorist threat.
Purpose
The purpose of this work is to create a numerical model to determine the «vulnerability» zone of a facility in case of a chemical attack by terrorists in a built-up environment.
Methodology
We consider the solution method on the example of solving two problems that can be formulated when analyzing terrorist acts with the use of a chemical or biological agent.
Direct problem. If a chemical (biological) agent is used in a terrorist attack, contaminated area can be calculated on the basis of the following mass transfer equation (plan task) [2–5, 7, 8]:
(2)
where
– average
concentration of
chemical
(biological)
agent in
atmospheric air;
–
coefficient
taking into
account the
agent
decomposition in
the atmosphere;
– components
of the
air velocity
vector;
– coefficients
of atmospheric
turbulent
diffusion;
– intensity of
agent emission
during the
terrorist
attack;
– Dirac delta
function;
– coordinates
of the
agent emission
source during
the terrorist
attack;
t
– time.
The boundary conditions for the equation (2) are written as [3]:
for
at the boundaries of the calculated area, where is the known value.
When solving the «direct» problem, it is necessary to specify information about the chemical agent emission point (coordinates), as well as the agent emission intensity ).
To apply the equation (1) in the case of dispersion of a chemical (biological) agent in a built-up environment, it is necessary to know the uneven velocity field of the wind flow, i.e. the value of the variables u=f(x,y), v=f(x,y). The definition of this field in the presence of buildings is a complex hydrodynamic problem. Abroad, to solve this problem, one traditionally uses the Navier-Stokes equations, supplemented by one or another turbulence model. This base allowed developing specialized software packages such as ANSYS Fluent, FAST, etc. These packages are a powerful tool for solving a wide class of problems. However, it is known that the use of the Navier-Stokes equations for calculating flows with large Reynolds numbers (iRe), requires the use of a very small computational grid, which immediately leads to large expenditures of computer time in the practical implementation of the model. In addition, very powerful computers are needed. This becomes a significant obstacle when it is necessary to carry out serial calculations, for example, when developing the ERP (Emergency Response Plan). In MES or in other competent organizations it is necessary to have fast-reading models, which, in this case, would take into account the most significant physical factors of the simulated process. In this work, to determine the wind velocity field u=f(x,y), v=f(x,y) in the built-up environment, the potential flow model will be used [5]:
, (3)
where Р is the velocity potential.
The value of the components of the wind velocity vector are determined on the basis of the ratios:
, . (4)
For equation (2) the following boundary conditions are set:
– On solid boundaries the impermeability condition is set:
=0,
where n is the unit vector of the outer normal to the boundary;
– On the boundary of the «out-flow» from the computational domain, the Dirichle boundary condition of the form P=const is set;
– On the boundaries where the air «in-flow» occurs, the Neumann boundary condition is set: =V, where V is the known velocity of the air flow.
The solution of problems for determining the size and intensity of contaminated area on the basis of equations (1), (2) is called the direct mass transfer problem solution.
To determine the «vulnerability» zone of a facility in case of a possible chemical attack, one can use the equations (1) and (2) and determine this zone by «brute force searching» for various coordinate values, i.e. perform calculations for various points of chemical agent emission. It is quite obvious that such a solution of the problem for determining the «vulnerability» zone using the brute force method for parameters requires a lot of computational work, which is not always convenient.
Adjoint problem. Now we will consider a different approach to determining the facilty «vulnerability» zone in case of a chemical terrorist attack.
This approach is based on the application of the adjoint equation (3) [3]:
, (5)
where is the function associated with the function , p is a certain function [3].
The boundary conditions for the adjoint problem have the form [3]:
– concentration of the chemical agent in atmospheric air at t=T;
at the boundaries of the calculated area.
The
peculiarity of applying the equation (3) is that the wind flow
velocity field is uneven in
a built-up environment and is
determined by preliminary solving the equation (2) with the
subsequent calculation of the velocity vector components by
dependencies (3).
The form of the function p can be extremely diverse [3], for example:
. (6)
If the solution of the adjoint equation (5) is found, then, further, it is necessary to find the value of the following functional [3]
, (7)
Having constructed the isolines of this functional, we find the solution of the problem posed out of the condition
(8)
We now consider the methodology for solving the adjoint equation. To solve the adjoint problem (4), we introduce new variables [3]:
,, .
The solution of the adjoint problem begins with the time t = T.
When using new variables, the equation (5) takes the form of equation (2). Next, we will conduct an approximation of the derivatives, following [2, 5]. The approximation of the time derivative is as follows:
.
Further, in the formulas, the symbols «*», «« will be omitted.
The first derivatives are approximated by the relations [5]
where
.
For approximation of the first derivatives, we use the formulas [2, 5]:
,
,
,
.
Approximation of the second derivatives is carried out as follows [5]:
Taking into account the above designations of difference operators, we write the difference analogue of equation (2):
(9)
Now we carry out the splitting of the difference equation (9). The splitting equations at each step are written as:
At the first step ():
(10)
At the second step (;):
(11)
At the third step (;) the dependence (11) is applied.
At the fourth step (;) the dependence (10) is applied.
The desired value of the function C at each fractional step is determined by the «point-to-point computation» formula. At the last calculation step, we have the equation
.
To solve this equation, the Euler method is used.
For the numerical solution of the equation (2), the method by A.A. Samarskii is used. Preliminarily the equation (2) is reduced to evolutionary form.
, (12)
here is fictitious time.
When , solution of the equation (12) tends to solution of the Laplace equation (3). To solve the equation (12), it is necessary to specify the potential field at t=0, for example, one can take P=0 in the entire computational domain.
The solution of equation (12) is split into two steps, at each step of splitting the difference equations have the form
The unknown value, at each splitting step, is calculated using the explicit point-to-point computation formula.
For the software implementation of the constructed numerical model, FORTRAN was used.
Findings
Figures 1, 2 present the results of solving the «direct» task – the calculation of the chemical contamination zone during ammonia emission at a specific point of the area. The characteristic direction of the wind speed is shown by an arrow in the figure. As can be seen from the presented figures, the chemical contamination zone increases with time and covers the buildings located in the area of attack.
Fig.
1. Isolines of NH3
concentration during
a hypothetical terrorist attack
(nondimensional
time, direct problem solution):
1
– point of agent
emission
Fig.
2. Isolines of NH3
concentration during
a hypothetical terrorist attack
(nondimensional time, direct problem solution):
1
– point of agent
emission n
The time to solve the direct problem is 3 seconds.
Fig. 3 shows the sketch of the computational domain in the second problem – «vulnerability» zone determination based on the adjoint equation. The situation of a possible chemical attack in the area of three buildings is simulated (Fig. 3). It was assumed that near the attack objective (building), the concentration of ammonia should not exceed the threshold value for time moment (nondimensional concentration and time).
Fig.
3. Sketch of computational domain (the second
task –
«vulnerability» zone determination
for the facility):
1 –
target
of terrorist attack
Figure 4 shows the lines of the functional (7) defined after solving the adjoint equation (5). The arrow in Fig. 3 and 4 indicates the wind direction.
Fig.
4. Isolines of
functional (7) for time
moment(
nondimensional time)
The isolines in Fig. 4 show that if the chemical agent emission source is along one of the lines I=const, then the chemical effect on the objective of attack will be the same. Thus, isoline I=9 shows that if the chemical agent emission is at one of the points on this isoline, then at the time moment the concentration of the chemical agent near the objective of attack will correspond to a given value (here the concentration is nondimensional value).
The chemical agent emission inside the zone constrained by this isoline will lead to an even greater degree of atmospheric air contamination near the objective of attack.
It should be noted that the calculation time of the «vulnerability» zone is about 3 seconds.
Originality and practical value
The numerical model has been developed that allows determining the «vulnerability» zone near the objective of a possible terrorist attack with the use of a chemical (biological) agent.
The peculiarity of the developed model is the use of the adjoint equation to solve the problem together with the potential flow equation for calculating the wind velocity field in build-up environment. The computer time consumed for the implementation of the model is a few seconds.
Conclusions
The numerical model has been developed for determining the «vulnerability» zone of a facility during a possible chemical attack by a terrorist in build-up environment. The calculation basis is the solution of the adjoint mass transfer equation. The constructed model can be used to develop a strategy to minimize the consequences of terrorist attacks with the use of chemical (biological) agents. Further improvement in this direction should be carried out for developing a three-dimensional numerical model that allows determining the dimensions of the facility «vulnerability» zone during a possible terrorist attack.
LIST OF REFERENCE LINKS
Алымов, В. Т. Техногенный риск. Анализ и оценка : учеб. пособие для вузов / В. Т. Алымов, Н. П. Тарасова. – Москва : Академкнига, 2004. – 118 с.
Беляев,
Н. Н. Защита зданий от проникновения в
них опасных веществ : монография / Н.
Н. Беляев,
Е. Ю. Гунько, Н. В. Росточило.
– Днепропетровск : Акцент ПП, 2014. – 136
с.
Марчук, Г. И. Математическое моделирование в проблеме окружающей среды / Г. И. Марчук. – Москва : Наука, 1982. – 320 с.
Оценка техногенного риска при эмиссии опасных веществ на железнодорожном транспорте / Н. Н. Беляев, Е. Ю. Гунько, П. С. Кириченко, Л. Я. Мунтян. – Кривой Рог : Р. А. Козлов, 2017. – 127 с.
Численное
моделирование распространения
загрязнения в окружающей среде /
М. З. Згуровский,
В. В. Скопецкий,
В. К. Хрущ, Н. Н. Беляев. – Киев : Наук.
думка, 1997. – 368 с.
Barret, A. M. Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectiveness : Degree of Doctor of Philosophy / Anthony Michael Barret ; Carnegie Mellon University. – Pittsburg, Pennsylvania, 2009. – 123 p.
Berlov, O. V.
Atmosphere protection in case of emergency during transportation of
dangerous cargo /
O. V. Berlov // Наука
та прогрес
транспорту. – 2016. – № 1
(61). – С. 48–54. doi:
10.15802/stp2016/60953
Biliaiev, M. M. Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography / M. M. Biliaiev, M. M. Kharytonov // NATO Science for Peace and Security. Series C: Environmental Security. – Dordrecht, 2012. – P. 87–91. doi: 10.1007/978-94-007-1359-8_15
CEFIC Guidance on safety Risk Assessment for Chemical Transport Operations [Electronic resource]. – Available at: https://app.croneri.co.uk/news/cefic-guidance-safety-risk-assessment-chemical-transport-operations?product=139 – Title from the screen. – Accessed : 29.01.2018.
Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility / Aleksandr Tumanov, Vasily Gumenyuk, Vladimir Tumanov // IOP Conf. Series: Earth and Environmental Science. – 2017. – Vol. 90. doi: 10.1088/1755-1315/90/1/012027
Effect of barriers on the status of atmospheric pollution by mathematical modeling / Zahra Naserzadeh, Farideh Atabi, Faramarz Moattar, Naser Moharram Nejad // Bioscience Biotechnology Research Communication. – 2017. – Vol. 10 (1). – P. 192–204.
Multi-Objective
Optimization Model of Emergency Organization Allocation for
Sustainable Disaster Supply Chain / Cejun Cao, Congdong Li, Qin
Yang, Fanshun Zhang // Sustainability.
– 2017. – Vol. 9. – Іss. 11.
doi:
10.3390/su9112103
Protective Action Criteria. A Review of Their Derivation, Use, Advantages and Limitations [Electronic resource] / Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. – Edmonton, Alberta, 2017. – Available at: http://open.alberta.ca/publications/9781460131213 – Title from the screen. – Accessed : 14.06.2018.
The
analysis of the use of mathematical modeling for emergency planning
purposes / Ondrej Zavila, Pavel Dobes, Jakub Dlabka, Jan Bitta //
Bezpecnostni vyzkum. The Science for Population Protection. –
2015. –
No.
2.
М. М. БІЛЯЄВ1*, О. В. Бєрлов2*, І. В. КАЛАШНІКОВ3*, В. А. КОЗАЧИНА4*
1*Каф.
«Гідравліка та водопостачання»,
Дніпропетровський національний
університет залізничного транспорту
імені академіка В. Лазаряна, вул.
Лазаряна, 2, Дніпро, Україна, 49010, тел.
+38 (056) 273 15 09,
ел. пошта
water.supply.treatment@gmail.com, ORCID 0000-0002-1531-7882
2*Каф.
«Безпека життєдіяльності», Державний
вищий навчальний заклад
«Придніпровська
державна академія будівництва та
архітектури», вул. Чернишевського, 24а,
Дніпро, Україна, 49600, тел. +38 (056) 756 34 57,
ел. пошта berlovalexandrr@gmail.com,
ORCID 0000-0002-7442-0548
3*ДП
«Проектно-вишукувальний інститут
залізничного транспорту України
«Укрзалізничпроект», вул. Конарєва, 7,
Харків, Україна, 61052, тел. +38 (057) 724 41 25,
ел. пошта uzp38@ukr.net, ORCID 0000-0002-2814-380X
4*Каф.
«Гідравліка та водопостачання»,
Дніпропетровський національний
університет залізничного транспорту
імені академіка В. Лазаряна, вул.
Лазаряна, 2, Дніпро, Україна, 49010, тел.
+38 (056) 273 15 09,
ел. пошта v.kozachyna@gmail.com,
ORCID 0000-0002-6894-5532
РОЗРАХУНОК
ЗОНИ «УРАЗЛИВОСТІ» ОБ’ЄКТа
за МОЖЛИВОго ТЕРАКТу Із ЗАСТОСУВАННЯМ
ХІМІЧНОГО АГЕНТА
Мета. Робота передбачає розробку чисельної моделі для розрахунку зони «уразливості» можливого об’єкта атаки терориста із застосуванням хімічного агента в умовах забудови. Зона «уразливості» являє собою територію біля об’єкта атаки, де емісія хімічного агента під час теракту призведе до небажаних наслідків. Емісія хімічного агента поза зоною «уразливості» не створить небезпечну концентрацію біля об’єкта атаки. Методика. Для вирішення поставленого завдання використано рівняння для потенціалу швидкості, на базі якого визначено поле швидкості вітрового потоку, і рівняння, спряжене з рівнянням масопереносу в атмосферному повітрі хімічного агента, викинутого в разі теракту. Під час моделювання були враховані нерівномірне поле швидкості вітрового потоку, атмосферна дифузія, інтенсивність викиду хімічно небезпечної речовини. Під час чисельного інтегрування рівняння для потенціалу швидкості використаний метод Самарського А. А. Для чисельного розв’язання спряженого рівняння введені нові змінні та застосована неявна різницева схема розщеплення. Особливістю розробленої чисельної моделі є можливість оперативної оцінки зони «уразливості» біля можливого об’єкта атаки. Результати. Розроблена чисельна модель і комп’ютерна програма можуть бути використані для науково обґрунтованої оцінки стану зони «уразливості» біля важливих об’єктів у разі можливих терактів із застосуванням хімічних (біологічних) агентів. Побудована чисельна модель може бути реалізована на комп’ютерах малої і середньої потужності, що дозволяє широко використовувати її для вирішення завдань зазначеного класу під час розробки плану ліквідації в аварійній ситуації. Наведені результати обчислювального експерименту, що дозволяють оцінити можливості цієї чисельної моделі. Наукова новизна. Запропоновано ефективну чисельну модель для розрахунку зони «уразливості» біля об’єкта, який може бути ціллю терористичної атаки із застосуванням хімічного агента. Модель заснована на чисельному інтегруванні рівняння для потенціалу швидкості й рівняння, що є спряженим до рівняння масопереносу хімічно небезпечної речовини в атмосфері. Практична значимість. Розроблена модель може бути використана для організації захисних заходів біля об’єктів можливої хімічної атаки терориста.
Ключові слова: теракт; хімічне забруднення; зона «уразливості»; спряжене рівняння; чисельне моделювання; забруднення атмосфери
Н. Н. БЕЛЯЕВ1*, А. В. БЕРЛОВ2, И. В. КАЛАШНИКОВ3*, В. А. КОЗАЧИНА4*
1*Каф.
«Гидравлика и водоснабжение»,
Днепропетровский национальный
университет железнодорожного транспорта
имени академика В. Лазаряна, ул. Лазаряна,
2, Днипро, Украина, 49010, тел. +38 (056) 273 15 09,
эл. почта water.supply.treatment@gmail.com, ORCID
0000-0002-1531-7882
2*Каф.
«Безопасность жизнедеятельности»,
Государственное высшее учебное заведение
«Приднепровская государственная
академия строительства и архитектуры»,
ул. Чернышевского, 24а, Днипро, Украина,
49600, тел. +38 (056) 756 34 57,
эл. почта
berlovalexandrr@gmail.com, ORCID 0000-0002-7442-0548
3*ГП
«Проектно-изыскательный институт
железнодорожного транспорта
«Укрзализнычпроект», ул. Конарева,
7, Харьков, Украина, 61052, тел. +38 (057) 724 41
25,
эл. почта uzp38@ukr.net, ORCID 0000-0002-2814-380X
4*Каф.
«Гидравлика и водоснабжение»,
Днепропетровский национальный
университет железнодорожного транспорта
имени академика В. Лазаряна, ул. Лазаряна,
2, Днипро, Украина, 49010, тел. +38 (056) 273 15 09,
эл. почта v.kozachyna@gmail.com, ORCID
0000-0002-6894-5532
РАСЧЕТ
ЗОНЫ «УЯЗВИМОСТИ» ОБЪЕКТА
ПРИ ВОЗМОЖНОМ
ТЕРАКТЕ С ПРИМЕНЕНИЕМ
ХИМИЧЕСКОГО
АГЕНТА
Цель. Работа предполагает разработку численной модели для расчета зоны «уязвимости» возможного объекта атаки террориста с применением химического агента в условиях застройки. Зона «уязвимости» представляет собой территорию возле объекта атаки, где эмиссия химического агента при теракте приведет к нежелательным последствиям. Эмиссия химического агента вне зоны «уязвимости» не создаст опасной концентрации возле объекта атаки. Методика. Для решения поставленной задачи использовано уравнение для потенциала скорости, на базе которого определено поле скорости ветрового потока, и уравнение, сопряженное с уравнением массопереноса в атмосферном воздухе химического агента, выброшенного в случае теракта. При моделировании были учтены неравномерное поле скорости ветрового потока, атмосферная диффузия, интенсивность выброса химически опасного вещества. При численном интегрировании уравнения для потенциала скорости использован метод Самарского А. А. Для численного решения сопряженного уравнения введены новые переменные и применена неявная разностная схема расщепления. Особенностью разработанной численной модели является возможность оперативной оценки зоны «уязвимости» возле возможного объекта атаки. Результаты. Разработанная численная модель и компьютерная программа могут быть использованы для научно обоснованной оценки положения зоны «уязвимости» возле значимых объектов в случае возможных терактов с применением химических (биологических) агентов. Построенная численная модель может быть реализована на компьютерах малой и средней мощности, что позволяет широко использовать ее для решения задач рассматриваемого класса при разработке плана ликвидации в аварийной ситуации. Представлены результаты вычислительного эксперимента, позволяющие оценить возможности этой численной модели. Научная новизна. Предложена эффективная численная модель для расчета зоны «уязвимости» возле объекта, который может быть целью террористической атаки с применением химического агента. Модель основана на численном интегрировании уравнения для потенциала скорости и уравнения, являющегося сопряженным к уравнению массопереноса химически опасного вещества в атмосфере. Практическая значимость. Разработанная модель может быть использована для организации защитных мероприятий возле объектов возможной химической атаки террориста.
Ключевые слова: теракт; химическое загрязнение; зона «уязвимости»; сопряженное уравнение; численное моделирование; загрязнение атмосферы
References
Alymov, V. T., & Tarasova, N. P. (2004). Tekhnogennyy risk. Analiz i otsenka: Uchebebnoe posobie dlya vuzov. Moscow: Akademkniga. (in Russian)
Belyaev, N. N., Gunko, Y. Y., & Rostochilo, N. V. (2014). Zashchita zdaniy ot proniknoveniya v nikh opasnykh veshchestv: Monografiya. Dnepropetrovsk: Aktsent PP. (in Russian)
Marchuk, G. I. (1982). Matematicheskoye modelirovaniye v probleme okruzhayushchey sredy. Moscow: Nauka. (in Russian)
Belyaev, N. N., Gunko, Y. Y., Kirichenko, P. S., & Muntyan, L. Y. (2017). Otsenka tekhnogennogo riska pri emissii opasnykh veshchestv na zheleznodorozhnom transporte. Krivoi Rog: Kozlov R. A. (in Russian)
Zgurovskiy, M. Z., Skopetskiy, V. V., Khrushch, V. K., & Belyaev, N. N. (1997). Chislennoe modelirovanie rasprostraneniya zagryazneniya v okruzhayushchey srede. Kуiv: Naukova dumka. (in Russian)
Barret, A. M. (2009). Mathematical Modeling and Decision Analysis for Terrorism Defense: Assessing Chlorine Truck Attack Consequence and Countermeasure Cost Effectiveness. (Dissertation of Doctor of Philosophy). Carnegie Mellon University, Pittsburg. (in English)
Berlov, O. V. (2016). Atmosphere protection in case of emergency during transportation of dangerous cargo. Science and Transport Progress, 1(61), 48-54. doi: 10.15802/stp2016/60953 (in English)
Biliaiev, M. M., & Kharytonov, M. M. (2012). Numerical Simulation of Indoor Air Pollution and Atmosphere Pollution for Regions Having Complex Topography. NATO Science for Peace and Security. Series C: Environmental Security, 87-91. doi: 10.1007/978-94-007-1359-8_15 (in English)
CEFIC Guidance on safety Risk Assessment for Chemical Transport Operations. Retrived from https://app.croneri.co.uk/news/cefic-guidance-safety-risk-assessment-chemical-transport-operations?product=139 (in English)
Tumanov, A., Gumenyuk, V., & Tumanov, V. (2017). Development of advanced mathematical predictive models for assessing damage avoided accidents on potentially-dangerous sea-based energy facility. IOP Conf. Series: Earth and Environmental Science, 90. doi: 10.1088/1755-1315/90/1/012027 (in English)
Zahra Naserzadeh, Farideh Atabi, Faramarz Moattar, & Naser Moharram Nejad. (2017). Effect of barriers on the status of atmospheric pollution by mathematical modeling. Bioscience Biotechnology Research Communication, 10(1), 192-204. (in English)
Cao,
C., Li, C., Yang, Q., & Zhang, F. (2017).
Multi-Objective Optimization Model of Emergency Organization
Allocation for Sustainable Disaster Supply Chain. Sustainability,
9(11).
doi:
10.3390/su9112103 (in English)
Government of Alberta. Protective Action Criteria: A Review of Their Derivation, Use, Advantages and Limitations. Environmental Public Health Science Unit, Health Protection Branch, Public Health and Compliance Division, Alberta Health. Edmonton, Alberta. Retrived from http://open.alberta.ca/publications/9781460131213 (in English)
Ondrej Zavila, Pavel Dobes, Jakub Dlabka, & Jan Bitta. (2015). The analysis of the use of mathematical modeling for emergency planning purposes. Bezpecnostni vyzkum. The Science for Population Protection, 2. (in English)
Received: June 04, 2018
Accepted: September 28, 2018
doi : 10.15802/stp2018/ © M. M. Biliaiev, O. V. Berlov, I. V. Kalashnikov, V. A. Kozachyna, 2018