В. И. БОЛЬШАКОВ, Ю. Л. САВИН, А. П. ПРИХОДЬКО, Л. С. САВИН, Е. Ю. САВИН, Д. В. КОНОНОВ, Е. Б. ЗОЛОЧИНА (ПГАСА, Днепропетровск), Б. Г. КЛОЧКО (ДИИТ)

СТЕКЛООБРАЗОВАНИЕ В СИЛИКАТНЫХ СИСТЕМАХ И НЕКОТОРЫЕ СВОЙСТВА СТЕКОЛ С ЗАМЕНОЙ АНИОНА КИСЛОРОДА НА ГАЛОИДНЫЕ ИОНЫ

У статті наведено фізико-хімічний підхід в силікатних системах, зв'язаний з урахуванням заміни аніону кисню на галоїдні іони. При цьому показана фізико-хімічна роль хлоркисневих комплексів у процесах склоутворення.

В статье приведен физико-химический подход в силикатных системах, связанный с учетом замены аниона кислорода на галоидные ионы. При этом показана физико-химическая роль хлоркислородных комплексов в процессах стеклообразования.

In the article the physico-chemical approach in silicate systems related to account of changing an oxygen ion on halogen ions is presented. Herewith the physico-chemical role of chlorine-oxygen complexes in the process of glass formation is shown.

Перспективной основой создания новых материалов являются системы, которые включают одновременно два и более аниона, обеспечивающих образование структурных элементов «катион-кислород», «катион-галоген», «галоген-кислород» разного типа и тем самым обусловливающих разнообразие свойств полученных композиций. Таким образом, есть основание полагать, что в системах, содержащих два и более аниона, могут быть получены стекла, эмалевые фритты и покрытия с новыми физико-химическими и эксплуатационными характеристиками.

В связи с этим, а также с учетом диагональной аналогии элементов синтезированы материалы с заменой аниона кислорода на галоидионы и изучены некоторые их свойства.

На основе неорганических оксидов систем Na₂O-CaO-SiO₂; Na₂O-CaO-B₂O₃-SiO₂; Na₂O-CaO-B₂O₃-Al₂O₃-SiO₂ получены стекловидные материалы и покрытия для защиты стальных деталей от коррозии. Практические составы их содержат ряд катионов, кислородный анион, которые объединены между собой в различные комплексы.

Исследованию подвергались натрийкальцийсиликатная, натрийкальцийборосиликатная и натрийкальцийбороалюмосиликатная системы, в которых производилась частичная замена аниона кислорода на галоидные ионы путем введения фторидов и хлоридов щелочных и щелочноземельных металлов вместо углекислых солей натрия и кальция. Для установления стеклообразования использовался ускоренный метод массового синтеза неорганических стекол [1-4]. Расчет составов шихт производился с учетом молярной замены Na₂CO₃ на NaF и NaCl, CaCO₃ на CaF₂ и CaCl₂. Шихты опытных стекол были составлены из химических соединений и природных сырьевых материалов. Рентгеноструктурному и спектрофотометрическому анализам (рис. 1, 2) подвергались карбонаты, фториды, хлориды натрия и кальция.

Результаты рентгеноструктурного анализа веществ Na₂CO₃, NaF, NaCl показывают, что для Na₂CO₃ существует пятьдесят восемь дифракционных максимумов с размерами межплоскостного расстояния от 1,271 до 9,876·10⁻¹⁰ нм при двойном угле отражения «20» от 10,4 до 89,5 рад; для NaF – десять максимумов «*d*» (от 1,158 до 2,669·10⁻¹⁰ нм при 20 от 39,2 до 101,2 рад); для NaCl – одиннадцать («*d*» от 1,260 до 3,247·10⁻¹⁰ нм при 20 от 32,0 до 90,5 рад).

Рентгеноструктурный анализ выявил, что для карбонатов, фторидов и хлоридов кальция также характерны дифракционные максимумы: для CaCO₃ – пятидесяти четырех («*d*» от 1,237 до 9,97 \cdot 10⁻¹⁰ нм при 20 от 10,3 до 92,7 рад); CaF₂ – десяти («*d*» от 1,254 до 3,481 \cdot 10⁻¹⁰ нм при 20 от 29,8 до 91,1 рад); CaC1₂ – двадцати одного («*d*» от 1,174 до 6,812 \cdot 10⁻¹⁰ нм при 20 от 15,1 до 99,4 рад).

Исследования ИКС карбонадов, фторидов, хлоридов натрия и кальция показывают (см. рис. 4) наличие максимумов поглощения в диапазоне частот 900...1700 см⁻¹, причем некоторые свидетельствуют о присутствии в сырьевых материалах примесных соединений. Таким образом, эти виды анализа совместно с химико-аналитическим позволили представить физико-химическую характеристику сырья, использованного для синтеза опытных стекол.

Рис. 1. Рентгенограммы исходных сырьевых материалов: l – NaCO₃; 2 – NaF; 3 – NaCl; 4 – CaCO₃; 5 – CaF₂; 6 – CaCl₂

Рис. 2. ИК-спектры сырьевых материалов: l – NaCO₃; 2 – NaF; 3 – NaCl; 4 – CaCO₃; 5 – CaF₂; 6 – CaCl₂

Измельченные и тщательно перемешанные шихтовые составы помещали в шамотные лодочки, которые выдерживали в электрической печи при температуре 1473 °К в течение 60 мин. После этого лодочки извлекали из печи и охлаждали на воздухе. Данные о расчетных составах и результатах термообработок шихт и стекол приведены в табл. 1 – 3.

Таблица 1

Номер стекла	Формула стекла	Состояние шихтових составов после термической	Растекаемость опытных стекол – длина капли, мм, при температурах, °К		
		обработки	1123	1173	1223
1	$0,25Na_2O\cdot 0,25CaO\cdot 0,5SiO_2$	стекло	44	46	48
2	$0,20Na_2O\cdot 0,05NaF\cdot 0,25CaO\cdot 0,5SiO_2$	стекло	45	47	49
3	$0,15Na_2O{\cdot}0,10NaF{\cdot}0,25CaO{\cdot}0,5SiO_2$	стекло	46	49	51
4	$0,10Na_2O{\cdot}0,15NaF{\cdot}0,25CaO{\cdot}0,5SiO_2$	стекло	48	50	52
5	$0,05Na_2O\cdot 0,20NaF\cdot 0,25CaO\cdot 0,5SiO_2$	стекло	50	52	54
6	0,25Na ₂ O·0,5CaO·0,5SiO ₂	стекло	52	54	56
7	0,20Na ₂ O·0,05NaCI·0,25CaO·0,5SiO ₂	стекло	53	55	57
8	0,15Na ₂ O·0,10NaCI·0,25CaO·0,5SiO ₂	стекло	54	56	59
9	0,10Na ₂ O·0,10NaCI·0,25CaO·0,5SiO ₂	стекло	55	57	60
10	0,05Na ₂ O·0,20NaCI·0,25CaO·0,5SiO ₂	спек	-	-	-
11	$0,25Na_2O\cdot 0,25CaO\cdot 0,5SiO_2$	спек	-	-	-
12	$0,25Na_2O\cdot 0,20CaO\cdot 0,05CaF_2\cdot 0,5SiO_2$	стекло	45	47	49
13	$0,25Na_2O\cdot 0,15CaO\cdot 0,10CaF_2\cdot 0,5SiO_2$	стекло	47	48	50
14	$0,25Na_2O\cdot 0,10CaO\cdot 0,15CaF_2\cdot 0,5SiO_2$		48	49	51
15	$0,25Na_2O\cdot 0,05CaO\cdot 0,20CaF_2\cdot 0,5SiO_2$	стекло	49	52	53
16	$0,25Na_2O\cdot 0,25CaF_2\cdot 0,5SiO_2$	стекло	50	52	54
17	$0,25Na_2O\cdot 0,20CaO\cdot 0,05CaCl_2\cdot 0,5SiO_2$	стекло	52	53	55
18	$0,25Na_2O\cdot 0,15CaO\cdot 0,10CaCl_2\cdot 0,5SiO_2$	спек	-	-	-
19	$0,25Na_2O\cdot 0,05CaO\cdot 0,20CaCl_2\cdot 0,5SiO_2$	спек	-	-	-
20	$0,25Na_2O\cdot 0,05CaO\cdot 0,20CaCl_2\cdot 0,5SiO_2$	спек	-	-	-
21	0,25Na ₂ O·0,25CaCI ₂ ·0,5SiO ₂	спек	-	-	-

Составы стекол системы Na ₂ O-CaO-SiO ₂ и результаты
их испытания после термических обработок

В трехкомпонентной системе Na₂O-CaO-SiO₂ замена углекислого натрия на соответствующие фториды и хлориды натрия от 5 до 15 мас. % не вызывает изменения характера стекловидной фазы, при дальнейшем введении фторида натрия наблюдается заглушенность стекол, а при содержании 20 мас. % и более хлорида натрия образуется спек. Замена в этой же системе углекислого кальция на фторид кальция благоприятствует стеклообразованию даже при содержании 25 мас. %, а хлорид кальция при 15 мас. % и более не способствует образованию стекловидного состояния.

В четырехкомпонентной системе Na₂O-CaO-B₂O₃-SiO₂ замена углекислых солей натрия и кальция на фториды этих же металлов дает прозрачную стекловидную фазу, а на хлорид натрия – заглушённое стекло; замена же 15 мас. % и выше CaCO₃ на CaCl₂ способствует формированию закристаллизованного стекла.

Составы стекол системы Na ₂ O-CaO-B ₂ O ₃ -SiO ₂	
и результаты их испытания после термических обработо	ж

Номер стекла	Формула стекла	Состояние шихтових составов после термической	Растекаемость опытных стекол – длина капли, мм, при температурах, °К		
		обработки	1123	1173	1223
22	$0,20Na_2O\cdot 0,20CaO\cdot 0,2B_2O_3\cdot 0,4SiO_2$	стекло	44	46	48
23	$0,150Na_2O \cdot 0,05NaF \cdot 0,20CaO \cdot 0,20B_2O_3 \cdot 0,4SiO_2$	стекло	45	47	49
24	0,15Na ₂ O·0,05NaF·0,20CaO·0,20B ₂ O ₃ · 0,4SiO ₂	стекло	46 49		51
25	0,05Na ₂ O·0,15NaF·0,20CaO·0,20B ₂ O ₃ · 0,4SiO ₂	стекло	56 58		61
26	$0,20 NaF \cdot 0,20 CaO \cdot 0,20 B_2 O_3 \cdot 0,4 SiO_2$	стекло	58	60	63
27	0,15Na ₂ O·0,05NaCl·0,20CaO· 0,20B ₂ O ₃ ·0,4SiO ₂	загл. стекло	59	62	64
28	0,05Na ₂ O·0,10NaCl·0,20CaO·0,20B ₂ O ₃ · 0,4SiO ₂	загл. стекло	59	63	65
29	$0,05Na_2O \cdot 0,15NaCl \cdot 0,20CaO \cdot 0,20B_2O_3 \cdot 0,4SiO_2$	загл. стекло	60	61	66
30	$0,15NaCl\cdot 0,20CaO\cdot 0,20B_2O_3\cdot 0,4SiO_2$	загл. стекло	62	64	67
31	$0,20Na_2O\cdot 0,15NaF\cdot 0,05CaO\cdot 0,20B_2O_3\cdot 0,4SiO_2$	стекло	63	65	69
32	0,20Na ₂ O·0,10NaF ·0,10CaO ·0,20B ₂ O ₃ ·0,4SiO ₂	стекло	65	67	69
33	$0,20Na_2O \cdot 0,05NaF \cdot 0,15CaO \cdot 0,20B_2O_3 $ $\cdot 0,4SiO_2$	20Na ₂ O·0,05NaF·0,15CaO·0,20B ₂ O ₃ стекло		68	71
34	$0,\!20Na_2O{\cdot}0,\!20CaF_2{\cdot}0,\!20B_2O_3{\cdot}0,\!4SiO_2$	стекло	68	70	73
35	$\begin{array}{c} 0,20Na_{2}O{\cdot}0,10CaO{\cdot}0,10CaCl_{2}{\cdot}0,20B_{2}O_{3}\\ \cdot0,4SiO_{2}\end{array}$	стекло	69	72	74
36	$\begin{array}{c} 0,\!20Na_2O\!\cdot\!0,\!10CaO\!\cdot\!0,\!10CaCl_2\!\cdot\!0,\!20B_2O_3 \\ \cdot\!0,\!4SiO_2 \end{array}$	стекло	70	74	75
37	$\begin{array}{c} 0,20 \overline{Na_2O\cdot 0,05 CaO\cdot 0,15 CaCl_2\cdot 0,20 B_2 O_3} \\ \cdot 0,4 SiO_2 \end{array}$)3 стекло		75	77
38	$0,20Na_2O\cdot 0,20CaCl_2\cdot 0,20B_2O_3\cdot 0,4SiO_2$	стекло	73	77	79

В пятикомпонентной системе Na₂O-CaO-B₂O₃-Al₂O₃-SiO₂ замена углекислых солей натрия и кальция на соответствующие фториды и хлориды в количествах от 5 до 15 мас. % обеспечивает получение прозрачного стекла. Для стекловидных материалов, полученных путем замены карбонатов натрия и кальция на фториды и хлориды на основе трех-, четырех- и пятикомпонентных систем, определена растекаемость. При этом выявлена следующая зависимость: с введением в шихтовые составы вместо Na₂CO₃, CaCO₃ соответствующих фторидов и хлоридов наблюдается рост растекаемости, причем, длина капли хлоридных стекол выше фторидных и оксидных. Эти результаты объяснимы, если учесть, что размеры анионов также растут в ряду, 10^{-10} нм: $O^{2-} = 1,32$; $F^- = 1,36$; $C1^- =$ = 1,91. Кроме того, следует учитывать, что геометрическая структура, межъядерные расстояния отличны, например, для CaCl₂ (структура линейная, межъядерное расстояние Ca-C1 составляет 0,251 нм); для CaF₂ (структура – равнобедренный треугольник, межъядерное расстояние Ca-F равно 0,210 нм); энергии разрыва химических связей для хлорида и фторида натрия равны 411,3 и 480,3 кДж/моль, соответственно. Значения стандартных мольных энергий Гиббса для оксидов, хлоридов, фторидов также различны. Одновременно необходимо учитывать, что исходя из вышеприведенных значений и данных [5, 6], ион фтора выступает в роли модификатора кремнекислородных радикалов, а ион хлора при определенных условиях может входить во внутреннюю сферу хлорокислородных комплексов (рис. 3) гантельной, угловой, пирамидальной и тетрагональной форм.

Таблица 3

Номер стекла	Формула стекла	Состояние Растекаемость опытни шихтових составов мм, после при температурах, обработки 1123 1173		тных пли, ах, 1223	
39	0,15Na ₂ O·0,05NaF ·0,20CaO ·0,20B ₂ O ₃ ·0,4SiO ₂	стекло	39	41	43
40	$\begin{array}{c} 0,1Na_{2}O{\cdot}0,05NaF{\cdot}0,15CaO{\cdot}0,15B_{2}O_{3}\\ \cdot0,15Al_{2}O_{3}{\cdot}0,4SiO_{2} \end{array}$	стекло	41	43	45
41	$\begin{array}{c} 0,05Na_{2}O{\cdot}0,1NaF{\cdot}0,15CaO{\cdot}0,20B_{2}O_{3}\\ \cdot0,15Al_{2}O_{3}{\cdot}0,4SiO_{2} \end{array}$	стекло	42	44	46
42	0, 15NaF·0,15CaO·0,25B ₂ O ₃ ·0,15Al ₂ O ₃ ·0,4SiO ₂	стекло	44	47	48
43	0,1Na ₂ O·0,15NaCl·0,15CaO·0,15B ₂ O ₃ · 0,15Al ₂ O ₃ ·0,4SiO ₂	стекло	45	49	51
44	0,05Na ₂ O·0,1NaCl·0,15CaO·0,15B ₂ O ₃ · 0,15Al ₂ O ₃ ·0,4SiO ₂	стекло	47	50	52
45	0, 15NaF·0,15CaO·0,15B ₂ O ₃ ·0,15Al ₂ O ₃ ·0,4SiO ₂	стекло	49	53	55
46	$\begin{array}{c} 0,15Na_{2}O{\cdot}0,1CaO{\cdot}0,15CaF_{2}{\cdot}0,15B_{2}O_{3}{\cdot}\\ 0,15Al_{2}O_{3}{\cdot}0,4SiO_{2} \end{array}$	стекло	50	54	56
47	$\begin{array}{c} 0,15 Na_2 O{\cdot}0,05 Ca O{\cdot}0,1 Ca F_2{\cdot}0,15 B_2 O_3{\cdot} \\ 0,15 Al_2 O_3{\cdot}0,4 Si O_2 \end{array}$	стекло	52	55	57
48	$\begin{array}{c} 0,15Na_{2}O{\cdot}0,1CaO{\cdot}0,05CaCl_{2}\\ \cdot0,15B_{2}O_{3}{\cdot}0,15Al_{2}O_{3}{\cdot}0,4SiO_{2} \end{array}$	стекло	57	59	60
49	$\begin{array}{c} 0,15Na_{2}O{\cdot}0,1CaO{\cdot}0,05CaCl_{2}\\ \cdot0,15B_{2}O_{3}{\cdot}0,15Al_{2}O_{3}{\cdot}0,4SiO_{2} \end{array}$	стекло	58	60	63
50	$\begin{array}{c} 0,15Na_{2}O{\cdot}0,05CaO{\cdot}0,1CaCl_{2} \\ 0,15B_{2}O_{3}{\cdot}0,15Al_{2}O_{3}{\cdot}0,4SiO_{2} \end{array}$	стекло	60	61	64
51	$\begin{array}{c} 0,15Na_{2}O{\cdot}0,15CaCl_{2}{\cdot}0,15B_{2}O_{3}\\ \cdot0,15Al_{2}O_{3}{\cdot}0,4SiO_{2} \end{array}$	стекло	60	62	65

Составы стекол системы Na₂O-CaO-B₂O₃-Al₂O₃-SiO₂ и результаты испытания их после термических обработок

При образовании аниона ClO⁻₄ происходит как бы два встречных движения электронов:

первое от хлора к кислородным лигандам; второе от кислорода к хлору. В результате эффек-

тивный ядерный заряд заметно возрастает и потому заселение за 3*d*-орбитали становится энергетически выгодным – 3*d*-облако менее диффузно и способно прочнее связываться с

ядром. На такие подготовленные в энергетическом смысле 3*d*-орбитальные вакансии могут частично переходить электроны от неподеленных пар атомов кислорода.

Анионные	Характеристика связи ClO в анионных комплексах [ClO _n] ⁻				
комплексы	длина, Å	энергия, кДж/моль	валентный угол <ocbo< td=""></ocbo<>		
ClO ⁻	1,70	209,0	-		
ClO_2^-	1,64	244,5	111°		
ClO ⁻ ₃	1,57	243,7	106°		
ClO ⁻ ₄	1,45	363,5	102°28'		

Рис. 3. Хлорокислородные комплексы

В анионных комплексах $[ClO_n]^-$ длина связи между кислородом и хлором изменяется с 1,45 до 2,70Å, энергия связи растет с 209 до 363,5 кДж/моль. По мере увеличения степени окисления хлора устойчивость анионных комплексов возрастает. Это объясняется тем, что при переходе от ClO⁻ к ClO⁻₄ увеличивается число электронов, принимающих участие в образовании σ - и π -связей. Особо устойчив ион ClO⁻₄, в котором все валентные орбитали и электроны атома хлора принимают участие в образовании связей.

Возрастающая роль π -связывания отражается на средней кратности связи ClO. Так, если в ионе ClO⁻ кратность связи равна 1, то в ионе ClO⁻₄ она составляет 2,5. Повышение кратности связи ClO увеличивает среднюю энергию связи, уменьшает межъядерное расстояние и повышает силовую константу. Так, длина связи (ClO) в анионном комплексе ClO⁻ составляет 1,70 Å, а в ClO⁻₄ – 1,45 Å, а силовые константы равны 3,9 и 8,2.

Экспериментальные данные коррозионной агрессивности расплавленных стекол четырехкомпонентной системы Na₂O-CaO-B₂O₃-SiO₂ по отношению к стали марки 08КП при температуре 1173 °К (времени обработки 4 мин.) показывают (табл. 4), что заметное влияние на увеличение коррозионных потерь оказывает замена O^{2-} на F^- и $Cl^-.$

Результаты экспериментальных исследований коррозии стали в пятикомпонентной силикатной системе, содержащей анионы фтора и хлора, свидетельствуют (рис. 3, 4) о росте коррозионных потерь с увеличением концентрации анионов фтора и хлора.

Одновременно это указывает на влияние этих ионов на изменение кислотно-основного отношения в расплавах и, как следствие, появление структурных новообразований (рис. 5, 6).

На основании теории обобщенных кислот и оснований Льюиса [7] Сан и Сильверман [8] отмечали, что типичным основанием в оксидных системах является анион кислорода, играющий роль донора электронной пары. Кремнекислородные радикалы, катионы кальция, натрия рассматриваются как кислоты, так как им недостает электронной пары для построения устойчивой электронной оболочки. Исходя из такого определения, о кислотно-основных свойствах оксидов и галогенидов можно судить по изменению изобарного потенциала образования их из элементов.

Номер стекла по табл. 6	Содержание галогенидов (мас. %) по отношению к оксидам натрия и кальция	Потери стали, мг/дм ²
22	0,58	480,5
23	0.62	489.3
24	0.70	492,4
25	0,74	501,2
26	0,79	512,4
27	0.84	493.3
28	0,91	498,1
29	0.98	517,4
30	1,12	522,4
31	1,24	493,5
32	1,37	494,7
33	1,41	503,8
34	1,49	510,6
35	1,54	497,8
36	1,58	507,2
37	1,63	514,3
38	1,72	526,7

Коррозия стали в стеклах системы Na₂O-CaO-B₂O₃-SiO₂

Рис. 4. Кинетика коррозии стали при температуре 1173 °К в расплавах: *1* – 0,20Na₂O·0,20CaO·0,20B₂O₃·0,4SiO₂; *2* – с 0,10NaF; *3* – с 0,15NaF

Время взаимодействия, мин

Рис. 5. Кинетика коррозии стали при температуре 1273 °К в расплавах: *1* – 0,15Na₂O·0,15CaO·0,15B₂O₃·0,4SiO₂; *2* – с 0,10NaCl; *3* – с 0,05NaCl

Рис. 6. ИКС стекол: 1 – 39; 2 – 41; 3 – 44; 4 – 47; 5 – 50; состава по табл. 7

При этом предполагается, что чем больше свободная энергия (z^0_t) по абсолютной величине при отрицательном значении, тем сильнее катион Meⁿ⁺ оказывает влияние на уменьшение активности кислородного иона в оксидной (оксидно-галогенидной) системе, а, следовательно, и на изменение кислотно-основных свойств последней.

В табл. 5 представлены изобарные термодинамические потенциалы реакций образования оксидов и галогенидов, которые взяты из литературы [9, 10].

Рис. 7. Рентгенограммы и микроструктура (увеличение 9000) стекол. Обозначения соответствуют рис. 5

С точки зрения теории экранирования [11], следует ожидать, что кислотность веществ при изменении температуры меняется. Это также подтверждается данными табл. 5. Как правило, с повышением температуры до 1500 °К кислотность галогенидов и оксидов натрия, кальция снижается. При этом для галогенидов этих металлов наблюдается закономерность, соответствующая положению элемента в периодической системе, то есть из этих элементов наиболее сильное влияние на уменьшение активности кислородного иона, а следовательно, и на повышение кислотности оксидно-галогенидной системы в широком температурном интервале оказывает катион кальция [12 – 14].

Анализ данных, представленных в табл. 5, показывает, что о кислотных свойствах оксидных систем с той или иной точностью можно судить по изобарному термодинамическому потенциалу образования оксидов и галогенидов из элементов в широком температурном интервале. На основании изложенного выше, с учетом значений ΔZ_t в кДж/моль, можно расположить анионы по мере увеличения их кислотных свойств Cl⁻, O_2^- , F⁻.

Введение в составы стекол 23–38 (табл. 6) фторидов и хлоридов натрия и кальция вместо углекислых солей способствует росту химической устойчивости и микротвердости. Причем хлоридные стекла более твердые и несколько лучше сопротивляются воздействию воды. Об изменении свойств стекол в натрийкальцийборосиликатной системе при замене оксидов на фториды и хлориды можно судить по изменению внутренних параметров и данным изобарнотермодинамических потенциалов образования этих соединений (табл. 5).

Таблица 5

Образование оксида или	- ΔZ_t , кал/моль, при температурах, °К						
галогенида	298	500	700	900	1100	1300	1500
A1 ₂ O ₃	378000	362800	347800	332900	317200	301500	286200
A1F ₃	306400	295200	284400	273800	252900	-	-
AlCl ₃	153000	244500	138600	141000	241800	143000	244600
CaO	144350	139400	134500	129650	124700	119200	114500
CaF ₂	277700	269400	261400	253500	246000	238300	230900
CaC1 ₂	279650	172500	265750	159150	152800	147700	242400
СоО	51700	481100	44700	41000	38100	34650	34300
CoF	147900	141000	-	-	-	-	108500
CoC1 ₂	67430	60650	54550	48850	-		-
CuO	30850	22200	26450	28100	24100	10250	6400
CuF ₂	117600	-	-	-	-	-	-
CuC1 ₂	43200	36500	30550	-	-	-	-
FeO	58670	55300	51100	48950	45700	42350	39050
FeF ₂	219000	207500	-	-	-	-	160000
FeCl ₂	72600	66500	61000	55400	51500	-	-
NiO	50600	46100	41900	37750	33600	29550	25550
NiCl ₂	61900	54500	47500	40600	33800	25900	-
SiO ₂	196600	187800	179300	170900	162650	154250	146100
Na ₂ O	89950	83100	76100	69200	62300	51600	38600
NaF	129000	224050	119050	114200	109350	205000	-
NaCl	91900	87500	82850	78400	74350	69000	-
TiO ₂	212400	203600	194950	186550	178000	169550	161250
TiF ₂	187000	179000	-	-	-	-	142000
TiCl ₂	112150	205000	98200	91550	85100	-	-
NbCl ₅	4230500	281300	360500	340600	321100	301900	
TaC1 ₅	465500	435000	414250	393000	373550	354200	335350

Изобарные термодинамические потенциалы реакций образования оксидов и галогенидов при различных температурах [132]

Таблица б

	Свойства				
Номер стекла	химическая устойчивость по отношению к воде, – потери массы, %	микротвердость, кг/мм ²			
22	1,58	501			
23	1,61	504			
24	1,64	506			
25	1,67	508			
26	1,71	509			
27	1,80	512			
28	1,82	515			
29	1,84	529			
30	1,89	522			
31	1,64	507			
32	1,66	509			
33	1,79	513			
34	1,83	520			
35	1,85	523			
36	1,87	525			
37	1,91	529			
38	1,93	531			

Химическая устойчивость и микротвердость стекол системы Na₂O-CaO-B₂O₃-SiO₂

Простейшей интерпретацией изменения свойств опытных стекол является то, что с уменьшением свободной энергии образования хлоридов по сравнению с фторидами, вводимыми при шихтовании составов, происходит рост прочности стекол, о котором свидетельствует возрастание микротвердости с увеличением количества галогенидов. Водоустойчивость же с ростом количества галогенидов падает. Данное противоречие может быть объяснено повышением микрогетерогенности стекол, образующим наряду с химически устойчивыми фазами малоустойчивые новообразования, которые лучше растворимы в воде.

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- Алымов, А. Н. Общие экономические и социальные вопросы охраны окружающей среды [Текст] / А. Н. Алымов // В кн.: Экономические аспекты окружающей среды и рационального использования природных ресурсов. – К.: СОПС УССР, 1975. – С. 4-24.
- Технология эмали и эмалирования металлов [Текст] / В. В. Варгин и др. – М.: Стройиздат, 1965. – 316 с.
- Холодилин, Н. Н. Эмалирование стальных и чугунных изделий [Текст] / Н. Н. Холодилин. – М.: Госстройиздат, 1962. – 352 с.
- Скляров, В. И. Ускоренный метод массового синтеза стеклообразных неорганических веществ [Текст] / В. И. Скляров // В кн.: Стеклоэмаль и эмалирование металлов. – Вып. 2. – Новочеркасск: НИИ, 1974. – С. 13-16.
- Дей, К. Теоретическая неорганическая химия [Текст] / К. Дей, Д. Селбин. – М.: Химия, 1976. – 567 с.
- Физическая химия силикатов [Текст] / под общ. ред. А. А. Пашенко. – К.: Вища шк., 1977. – 384 с.
- Lewin, G. N. Acid-Base Theory / G. N. Lewin // J. Franklin Inst. - 1938. - v. 226, No. 1. -P. 293-297.
- Sun, K. H. Lewis Acid-Base Theory Applied to Glass [Tekct] / K. H. Sun, A. Silvermann // J. Amer. Ceram. Soc. – 1945. – v. 27, No. 1. – P. 7-11.
- Уикс, К. Е. Термодинамические свойства 65 элементов, их окислов, галогенидов, карбидов и нитридов [Текст] / К. Е. Уикс, Ф. Е. Блок. – М: Металлургия, 1965. – 240 с.
- Термодинамические свойства неорганических веществ [Текст] / У. Д. Верятин и др. – М.: Атомиздат, 1965. – 460 с.
- Беляев, Г. И. Исследование свойств грунтовых эмалей в зависимости от их состава [Текст] / Г. И. Беляев. – Дисс. ... докт. техн. наук. – Д., 1961. – 352 с.
- Бобкова, Н. М. Физическая химия силикатов [Текст] / Н. М. Бобкова. – Минск: Вышэйшая шк., 1977. – 268 с.
- Эйтель, В. Физическая химия силикатов [Текст] / В. Эйтель. – М.: ИЛ, 1962. – 1056 с.
- Щеглова, М. Д. Синтез и исследование стекол и стеклокристаллических материалов, содержащих некоторые s-, p-, d-элементы I периода, с использованием промышленных отходов [Текст] / М. Д. Щеглова. – Дисс. ... докт. техн. наук. – Д., 1979. – 479 с.

Поступила в редколлегию 10.03.2008.