ISSN 2307–3489 (Print), ІSSN 2307–6666 (Online)

Наука та прогрес транспорту. Вісник Дніпропетровського
національного університету залізничного транспорту, 2017, № 5 (71)



МАТЕРІАЛОЗНАВСТВО

матеріалознавство

UDC 669:621.791.75:539.5

I. O. VAKULENKO1, S. O. PLITCHENKO2*, N. G. MURASHOVA3

1Dep. «Applied Mechanics and Materials Science», Dnipropetrovsk National University of Railway Transport
named afterAcademician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 15 56,
e-mail dnuzt_texmat@ukr.net
, ORCID 0000-0002-7353-1916
2*Dep. «Applied Mechanics and Materials Science», Dnipropetrovsk National University of Railway Transport
named after Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 15 56,
e-mail plit4enko@ukr.net, ORCID 0000-0002-0613-2544
3«Design and Technological Bureau», Dnipropetrovsk National University of Railway Transport Named After
Academician V. Lazaryan, Lazaryan St., 2, Dnipro, Ukraine, 49010, tel. +38 (056) 373 15 56,
e-mail dnuzt_texmat@ukr.net
, ORCID 0000-0003-2758-0749

INFLUENCE OF STRUCTURAL PARAMETERS OF LOW-CARBON

STEEL ON ELECTRIC ARC BURNING

Purpose. The article is aimed to evaluate the influence of structural parameters of low-carbon steel on arcing process. Methodology. The values of the micro- and substructure characteristics of the electrode wire metal were changed by varying the parameters of heat treatment and cold deformation by drawing. The degree of plastic deformation was obtained by drawing blanks from different initial diameter to final dimension of 1 mm. The thermal treatment was carried out in electric chamber furnace of the SNOL-1,6.2,5.1/11-IZ type. The temperature was measured by chromel-alumel thermocouple and the electromotive force was determined using the DC potentiometer. In order to obtain the substructure of different dispersion degree the steel (after quenching from temperatures and tempering at 650°C for 1 hour) was subjected to cold drawing to reduction 17 – 80%. To form structure with different ferrite grain size the steel after drawing was annealed at 680°C for 1 hour. The microstructure was examined under a light and electron transmission microscope UEMV-100K at the accelerating voltage 100 kV. The grain and subgrain sizes were evaluated using the methodologies of quantitative metallography. A welding converter of the PSG-500 type was used to study the arc welding process of direct and reverse polarities. Findings. The experimentally detected value of the welding current, which depends on the degree of deformation during wire drawing, under conditions of stable arc burning of direct polarity is about an order of magnitude lower than the calculated value. Similar difference was found for the arc of reverse polarity: the experimental value of the welding current is 56 times less than the calculated value. Dependence analysis shows that, regardless of the polarity of the welding arc, a good enough agreement between the calculated and experimental values of the welding current is limited to deformations of 60%. For deformation degrees of more than 60%, the differences are explained by qualitative changes in the dislocation cell structure. Originality. In the conditions of stable arcing of different polarity for the electrode of low-carbon steel, an extreme dependence of welding current on the degree of cold plastic deformation was observed. Practical value. Influence of ferrite grain size of electrode wire on the value of welding current is much greater than that from substructure presence.

Keywords: structure; welding electric current; polarity; welding arc stability; cold plastic deformation; cell; ferrite

Introduction

In conditions of electric arc welding the process of arcing is sensitive to the influence of a certain number of factors [7, 11, 12, 18]. They include maintaining the optimal ratio between the rate of the electrode metal melting and its feeding into reaction zone, conditions of metal transfer through the interelectrode space [8, 15-17, 19, 20], etc. Taking into account that metal transfer between the electrodes is carried out in the form of a gas-droplet mixture, the very process of liquid metal droplet formation at the end of the electrode, its size and shape should to some extent influence the technological characteristics of electric arc welding. Analysis of the conditions for formation of liquid metal droplet indicates existence of certain relationship between the surface tension of metal and gravitational component [9]. Taking into account possible dependence of the surface tension forces on the structural state of electrode metal, the size of structural elements may have certain influence on the conditions of formation and burning of electric arc.

Purpose

The article is aimed to evaluate the influence of structural parameters of low-carbon steel on arcing process.

Material and methodology of study

A wire of 1 mm diameter of low-carbon steel with a carbon content of 0.2% was used as a material for electrode. The values of the micro- and substructure characteristics of the electrode wire metal were varied by varying the parameters of heat treatment and cold deformation by drawing. The values of the micro- and substructure characteristics of the electrode wire metal were changed by varying the parameters of heat treatment and cold deformation by drawing. The degree of plastic deformation was obtained by drawing blanks from different initial diameter to final dimension of 1 mm. Thermal treatment was carried out in electric chamber furnace of the SNOL-1,6.2,5.1/11-IZ type. To prevent the formation of oxide film on the metal surface, the samples were placed in quartz glass ampoules with preliminary deairing to the level of forvacuum. The temperature was measured by chromel-alumel thermocouple and the electromotive force was determined using the DC potentiometer. In order to obtain the substructure of different dispersion degree the steel after quenching from temperatures and tempering at 650°C for 1 hour was subjected to cold drawing to reduction 1780%. To form structure with different ferrite grain size the steel after drawing was annealed at 680°C for 1 hour. The microstructure was examined under a light and electron transmission microscope UEMV100K at the accelerating voltage 100 kV. The grain and subgrain sizes were evaluated using the methodologies of quantitative metallography [5]. A welding converter of the PSG-500 type was used to study the arc welding process of direct and reverse polarities. The welding current value was estimated as the average of 10 measurements.

Findings

Analysis of the results of investigations [79] indicates that when metal is melting, the surface tension forces form a drop at the end of the electrode. The moment of droplet detachment corresponds to the condition that the gravitational component exceeds the surface tension force. Taking into account that as the molten metal temperature rises, the surface tension force decreases, the welding current increase should lead to the dispersion of the emerging droplets. Condition of balance between the hydrostatic pressure from pinch effect and the surface tension () makes it possible to estimate the critical value of welding current ((, where В – is a constant equal to 32.7 А/, – the electrode diameter) upon the detachment of liquid metal droplet [9]. Substituting the constant В and of molten metal (1220 dynes/cm [9]) in the ratio for , the value for low-carbon steel should be about 360, which is confirmed by the data [8, 9]. The experimentally observed value of the welding current () on the degree of deformation during wire drawing () under conditions of stable arcing of direct polarity, is approximately an order of magnitude lower than the calculated value (Fig. 1).
A similar difference was found for the arc of reverse polarity: less than the calculated one in 56 times.

Fig. 1. Influence of the plastic deformation degree by drawing on the welding current value ():
1 – reverse polarity arc; 2 – direct polarity arc


The extreme nature of dependence on , is apparently due to the peculiarities of the substructural metallic structure. Considering the nature of dependence for , one can formally assume that either the value В depends on the chemical composition or structure of the steel, or should be replaced by another characteristic. To explain the correlation ratio on (Fig. 1), it was made an attempt to replace by the metal surface tension coefficient in the solid state. Taking into account the presence of volume fraction of ferrite in the investigated steel around 97–98%, the ferrite surface tension coefficient () can be taken as . Using the experimental data [2] and the transformations carried out [14], for a cold-deformed state one can write:

, (1)

where – ferrite shear modulus (0.82 dynes/cm), – Burgers vector [1], – size of dislocation cell.

Refinement of the dislocation cell structure obeys a proportional dependence on the degree of cold plastic deformation.

Taking into account that 20–30% of reduction is enough to start the formation of dislocation cellular structure of various degrees of perfection (Fig. 2), determination of the dependence of on made it possible to calculate the welding current value ().

As a ratio the dependence for after an appropriate substitution of for was used:

(2)

A joint analysis of absolute values and (Fig. 3) for direct polarity arc indicates a fairly good correlation only up to 60%reduction. For deformation degrees of more than 60%, the observed differences can only be explained by qualitative changes in the dislocation cell structure.

Indeed, at reductions more than 60–70% in carbon steels the processes of perfecting the formed dislocation cells start to develop.

At high degrees of plastic deformation, a progressive increase in the dislocation density is accompanied by intensive cleansing of the cell body from unbound dislocations, changes in the form of cells, decrease in thickness of sub-boundaries, and so on. [1, 4, 13]. All this, apparently leads to violation of the ratio for and is inherited by calculations. The results obtained for reverse polarity arc are similar to the data for direct polarity arc.

а – а

б – b

Fig. 2. Structure of steel 20 after martensite quenching, tempering at 650 °C, cold drawing
on 17 (a) and 30 % (b)


With constant sub-structural parameters of cold-deformed steel, for the arc of direct and reverse polarity, the nature of relationships (Fig. 1) indicates possible change in the coefficient В depending on the arc polarity. Taking into account existence of certain difficulties in burning an arc of reverse polarity, a change of value В can be fully justified. Indeed, when the polarity reverses, the conditions for stable arc burning should become more complicated [7, 8]. The evaluation showed that in order to increase the degree of coincidence between the calculated and experimental values of the welding current, for the reverse polarity arc, the value В should be about twice as large as for the direct polarity arc. The result of electric current calculating for the reverse polarity arc with respect to relation (2) (will be denoted as ) is shown in the Fig. 3.

Fig. 3. The influence of deformation degree by drawing the steel 20 on the welding current when burning the arc of direct (3, 4) and reverse (1, 2) polarity:
2, 4 – current curves obtained experimentally;
1, 3 – curves of currents, and respectively calculated according to the relation (2)


Dependence analysis shows that, regardless of the welding arc polarity, a good enough agreement between the calculated and experimental values of the welding current is limited to deformations of 60%. For large reductions, the degree of mismatch is proportional to the level of welding current values. For the direct polarity arc, when the welding current level is 20–35, the deviation of calculated values () from is 12–14%. For the reverse polarity arc at 45–57 , the value of difference between and reaches 20%. Results of the study indicate the existence of a certain influence of substructural metallic structure of the electrode metal on the welding arc burning processes. The observed dependence of the electric current value when burning the arc of different polarity is sufficiently well explained by the parameters of the substructure of cold-deformed low-carbon steel before the appearance of qualitative changes in the internal structure of metal.

In order to explain the nature of the observed welding current dependence on the substructure parameters of cold-drawn metal, investigations were carried out on the influence of ferrite grain boundaries of with large disorientation angles (-is the ferrite grain size after annealing the cold-drawn metal). Such necessity is due to differences in the degree of accumulation and distribution of crystal structure defects from the reduction value when drawing and after development of recrystallization processes when annealing. Taking into account the inverse proportional relationship between the ferrite subgrain size (D) on the reduction degree when drawing [6] and the observed correlation relationship (Fig. 3), it can be assumed that to describe the dependence the relationship of the following type can be used:

, (3)

where A, k and n – are the constants.

Results of the construction on (), where – ferrite grain size of the steel are shown in the Fig. 4.

The analysis of the ratios indicates a fairly good correlation when using the dependence:

, (4)

where – is the welding current at ∞, k – is the angle coefficient.

In general, it should be noted that regardless of the type of interface, increase in their total length is accompanied by increase in the welding current value. Taking into account qualitative differences in the distribution nature of crystal structure defects during the formation of grain boundaries with large disorientation angles and sub-grains as a result of cold drawing [4, 6], the existence of separate dependences for and D is completely justified.

Fig. 4. Influence of the grain sizes (1)
and the ferrite subgrain (2) of steel 20 on the
welding current when burning the arc
of reverse polarity


Analysis of the absolute values of the parameters of equation (4) indicates that the influence of the presence of ferrite grain boundaries with large disorientation angles (=30 А, k = 2) in the steel structure is much greater than the influence of the subgrain structure (= 8 А, k = 0,75). On the other hand, the electric resistance value for the ferrite structure of low-carbon steels is proportional to the accumulated defect density of the crystal structure [3] and inversely proportional to the ferrite grain size [10], can to some extent exert its influence on the process of welding arc burning through the surface tension of the metal.

Conclusions

1. In the conditions of stable burning of the arc of different polarity for the low-carbon steel electrode, the extreme dependence of the welding current on the degree of cold plastic deformation was observed.

2. Influence of the ferrite grain size of the electrode wire on the welding current value is much greater than the effect of the substructure presence.

Acknowledgement

The authors are grateful to Nadezhdin Yu. L., the Head of the Laboratory of the Department of Applied Mechanics and Materials Science of the Dnipropetrovsk National University of Railway Transport named after Academician V. Lazaryan for participating in the experiments and discussing the results.

THE LIST OF REFERENCE LINKS

  1. Бабич, В. К. Деформационное старение стали / В. К. Бабич, Ю. П. Гуль, И. Е. Долженков. – Москва : Металлургия, 1972. 320 с.

  2. Баранов, А. А. О начальных стадиях сфероидизации цементита в стали / А. А. Баранов // Изв. АН СССР. Серия: Металлы. – 1969. № 3. – С. 104–107.

  3. Бернштейн, М. Л. Структура деформированных металлов / М. Л. Бернштейн. – Москва : Металлургия, 1977. – 431 с.

  4. Вакуленко, И. А. Морфология структуры и деформационное упрочнение стали / И. А. Вакуленко,
    В. И. Большаков. – Днепропетровск : Маковецкий, 2008. – 196 с.

  5. Вакуленко, І. О. Структурний аналіз в матеріалознавстві / І. О. Вакуленко. – Дніпропетровськ : Маковецький, 2010. 124 с.

  6. Гриднев, В. Н. Прочность и пластичность холоднодеформированных сталей / В. Н. Гриднев, В. Г. Гаврилюк, Ю. Я. Мешков. – Київ : Наук. думка, 1974. – 231 с.

  7. Ерохин, А. А. Основы сварки плавлением / А. А. Ерохин. – Москва : Машиностроение, 1973. – 448 с.

  8. Крюковский, Н. Н. Ручная дуговая сварка плавящимся электродом // Сварка в машиностроении : справочник : в 4 т. Москва, 1978. – Т. 1. – С. 144–163.

  9. Петров, А. А. Сварка в защитных газах // Сварка в машиностроении : справочник : в 4 т. Москва, 1978. – Т. 1. С. 196–258.

  10. Шульце, Г. Металлофизика / Г. Шульце. – Москва : Мир, 1971. – 503 с.

  11. Effect of Welding Parameters on Mechanical Properties of Plasma Transferred Arc Welded SS 202 Plates / M. Ravichandran, N. Sabarirajan, T. Sathish, S. Saravanan // Applied Mechanics & Materials. – 2016. – Vol. 852. – P. 324–330. doi: 10.4028/www.scientific.net/amm.852.324.

  12. Holt, D. L. Dislocation Cell Formation in Metals / D. L. Holt // J. of Applied Physics. 1970. – Vol. 41. – Iss. 8. – Р. 3197–3201. doi: 10.1063/1.1659399.

  13. Influence of substructure strengthening of low carbon steel оn the arcing process / I. O. Vakulenko,
    S. O. Plitchenko, Yu. L. Nadezhdin, Yu. D. Kirienko //
    Welding and related technologies : Proc. of 9th Intern. Conf. of young scientists (23–26 May 2017, Kyiv, Ukraine). – Kyiv, 2017. – Р. 117–121.

  14. Investigation of cathode spot behavior of atmospheric argon arcs by mathematical modeling / J. Wendelstorf, G. Simon, I. Decker [et al.] // Proc. оf 12th Intern. Conf. on Gas Discharges and Their Applications. – Greifswald, Germany, 1997. – Vol. 1. – P. 62–65.

  15. Metal transfer in submerged arc welding / L. Ke, W. Zhisheng, Z. Yanjun, L. Cuirong // J. of Materials Processing Technology. – 2017. – Vol. 244. – P. 314–319. doi: 10.1016/j.jmatprotec.2017.02.004.

  16. Metal Vapour Behaviour in Gas Tungsten Arc Thermal Plasma during Welding / M. Tanaka, K. Yamamoto, S. Tashiro [et al.] // Welding in the World. – 2008. – Vol. 52. – Iss. 11–12. – P. 82–88.
    doi: 10.1007/bf03266686.

  17. Murphy, A. B. A Perspective on Arc Welding Research: The Importance of the Arc, Unresolved Questions and Future Direc-tions / A. B. Murphy // Plasma Chemistry and Plasma Processing. – 2015. – Vol. 35. – Iss. 3. – P. 471–489. doi: 10.1007/s11090-015-9620-2.

  18. Nestor, O. H. Heat intensity and current density distributions at the anode of high current, inert gas arcs /
    O. H. Nestor // J. of Applied Physics. – 1962. – Vol. 33. – Iss. 5. – P. 1638–1648. doi: 10.1063/1.1728803.

  19. Numerical simulation of droplet detachment in pulsed gas–metal arc welding including the influence of metal vapour / M. Hertel, A. Spille-Kohoff, U. Füssel, M. Schnick // J. of Physics D: Applied Physics. – 2013. – Vol. 46. – Iss. 2. – P. 224003. doi: 10.1088/0022-3727/46/22/224003.

  20. Shirvan, A. J. Modelling of electrode-arc coupling in electric arc welding / A. J. Shirvan, I. Choquet, H. Nilsson // Proc. of 6th Intern. Swedish Production Symposium. – Göthenburg, Swedish, 2014. – Vol. 1. – P. 1–8.


І. О. ВАКУЛЕНКО, С. О. ПЛІТЧЕНКО, Н. Г. МУРАШОВА

1Каф. «Прикладна механіка та матеріалознавство», Дніпропетровський національний університет залізничного
транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпро, Україна, 49010, тел. +38 (056) 373 15 56,
ел. пошта
, ORCID 0000-0002-7353-1916
2*Каф. «Прикладна механіка та матеріалознавство», Дніпропетровський національний університет залізничного
транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпро, Україна, 49010, тел. +38 (056) 373 15 56,
ел. пошта plit4enko@ukr.net, ORCID 0000-0002-0613-2544
3«Проектно-конструкторське технологічне бюро», Дніпропетровський національний університет залізничного
транспорту імені академіка В. Лазаряна, вул. Лазаряна, 2, Дніпро, Україна, 49010, тел. +38 (056) 373 15 56,
ел. пошта
plit4enko@ukr.net, ORCID 0000-0003-2758-0749

ВПЛИВ структурнИх параметрІв низЬкоВуглеЦЕВОЇ

сталІ на горІнНЯ ЕлектричНОЇ дуги

Мета. В статті передбачається зробити оцінку впливу структурних параметрів низьковуглецевої сталі на процес горіння електричної дуги. Методика. Значення мікро- і субструктурних характеристик металу електродного дроту змінювали, варіюючи параметрами термічної обробки та холодної деформації волочінням. Ступінь пластичної деформації отримували волочінням заготовок різного вихідного діаметра на кінцевий розмір 1 мм. Термічну обробку здійснювали в електричній камерній печі типу СНОЛ-1,6.2,5.1/11-З. Температуру вимірювали термопарою хромель-алюмель із визначенням електрорушійної сили за потенціометром постійного струму. Для отримання субструктури різної дисперсності сталь (після загартування й відпускання температури до 650 °С протягом 1 години) піддавали холодному волочінню на обтиск до 17–80 %. Для формування структури з різним розміром зерна фериту сталь після волочіння піддавалася відпалу при 680  С протягом 1 години. Мікроструктуру досліджували під світловим електронним просвітчастим мікроскопом УЕМВ-100К при прискорюючій напрузі 100 кВ. Розмір зерна і субзерна оцінювали з використанням методик кількісної металографії. Для досліджень процесу горіння зварювальної дуги прямої та зворотної полярностей використовували зварювальний перетворювач типу ПСГ-500. Результати. Експериментально виявлене значення зварювального струму, що залежить від ступеня деформації при волочінні дроту, в умовах стабільного горіння дуги прямої полярності приблизно на порядок нижче розрахункової величини. Аналогічну відмінність виявлено й для дуги зворотної полярності: експериментальна величина зварювального струму менше розрахункової у 5–6 разів. Аналіз залежностей свідчить, що незалежно від полярності зварювальної дуги, досить гарний збіг між розрахунковими та експериментальними значеннями зварювального струму обмежується деформаціями до 60 %. Для ступенів деформації більше 60 % відмінності пояснюються якісними змінами в дислокаційній комірчастій структурі. Наукова новизна. В умовах стабільного горіння дуги різної полярності для електрода з низьковуглецевої сталі виявлена екстремальна залежність зварювального струму від ступеня холодної пластичної деформації. Практична значимість. Вплив розміру зерна фериту електродного дроту на величину зварювального струму значно перевищує ефект від присутності субструктури.

Ключові слова: структура; зварювальний електричний струм; полярність; стабільність зварювальної дуги; холодна пластична деформація; комірка; ферит

И. А. ВАКУЛЕНКО1, С. А. ПЛИТЧЕНКО2*, Н. Г. МУРАШОВА3

1Каф. «Прикладная механика и материаловедение», Днепропетровский национальный университет
железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днипро, Украина,
49010, тел. +38 (056) 373 15 56, эл. почта dnuzt_texmat@ukr.net ,ORCID 0000-0002-7353-1916
2*Каф. «Прикладная механика и материаловедение», Днепропетровский национальный университет
железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днипро, Украина,
49010, тел. +38 (056) 373 15 56, эл. почта plit4enko@ukr.net, ORCID 0000-0002-0613-2544
3«Проектно-конструкторское технологическое бюро», Днепропетровский национальный университет
железнодорожного транспорта имени академика В. Лазаряна, ул. Лазаряна, 2, Днипро, Украина,
49010, тел. +38 (056) 373 15 56, эл. почта dnuzt_texmat@ukr.net, ORCID 0000-0003-2758-0749

Влияние структурных параметров низкоуглеродистой

стали на горение электрической дуги

Цель. В статье предполагается сделать оценку влияния структурных параметров низкоуглеродистой стали на процесс горения электрической дуги. Методика. Значения микро- и субструктурных характеристик металла электродной проволоки изменяли, варьируя параметрами термической обработки и холодной деформации волочением. Степень пластической деформации получали волочением заготовок разного исходного диаметра на конечный размер 1 мм. Термическую обработку осуществляли в электрической камерной печи типа СНОЛ-1,6.2,5.1/11-ИЗ. Температуру измеряли термопарой хромель-алюмель с определением электродвижущей силы по потенциометру постоянного тока. Для получения субструктуры разной дисперсности сталь (после закалки и отпуска температуры до 650 °С в течение 1 часа) подвергали холодному волочению на обжатие до 17–80 %. Для формирования структуры с разным размером зерна феррита сталь после волочения подвергалась отжигу при 680 °С в течение 1 часа. Микроструктуру исследовали под световым электронным просвечивающим микроскопом УЭМВ-100К при ускоряющем напряжении 100 кВ. Размер зерна и субзерна оценивали с использованием методик количественной металлографии. Для исследований процесса горения сварочной дуги прямой и обратной полярностей использовали сварочный преобразователь типа ПСГ-500. Результаты. Экспериментально обнаруженное значение сварочного тока, зависящего от степени деформации при волочении проволоки, в условиях стабильного горения дуги прямой полярности примерно на порядок ниже расчетной величины. Аналогичное различие обнаружено и для дуги обратной полярности: экспериментальная величина сварочного тока меньше расчетной в 5–6 раз. Анализ зависимостей свидетельствует, что независимо от полярности сварочной дуги, достаточно хорошее совпадение между расчетными и экспериментальными значениями сварочного тока ограничивается деформациями до 60 %. Для степеней деформации более 60 % различия объясняются качественными изменениями в дислокационной ячеистой структуре. Научная новизна. В условиях стабильного горения дуги различной полярности для электрода из низкоуглеродистой стали обнаружена экстремальная зависимость сварочного тока от степени холодной пластической деформации. Практическая значимость. Влияние размера зерна феррита электродной проволоки на величину сварочного тока значительно превышает эффект от присутствия субструктуры.

Ключевые слова: структура; сварочный электрический ток; полярность; стабильность сварочной дуги; холодная пластическая деформация; ячейка; феррит

REFERENCES

  1. Babich, V. K., Gul, Y. P., & Dolzhenkov, I. Y. (1972). Deformatsionnoye stareniye stali. Moscow: Metallurgiya.

  2. Baranov, A. A. (1969). O nachalnykh stadiyakh sferoidizatsii tsementita v stali. Russian Metallurgy, 3, 104-107.

  3. Bernshteyn, M. L. (1977). Struktura deformirovannykh metallov. Moscow: Metallurgiya.

  4. Vakulenko, I. A., & Bolshakov V. I. (2008). Morfologiya struktury i deformatsionnoye uprochneniye stali. Dnipropetrovsk: Makovetskyi.

  5. Vakulenko, І. O. (2010). Strukturnyi analiz v materialoznavstvi. Dnipropetrovsk: Makovetskyi.

  6. Gridnev, V. N., Gavrilyuk, V. G., & Meshkov, Y. Y. (1974). Prochnost i plastichnost kholodnodeformirovan-nykh staley. Kyiv: Naukova dumka.

  7. Yerokhin, A. A. (1973). Osnovy svarki plavleniyem. Moscow: Mashinostroeniye.

  8. Kryukovskiy, N. N. (1978). Ruchnaya dugovaya svarka plavyashchimsya elektrodom. In Svarka v mashinostroyenii [Guide] (Vol. 1) (pp. 144-163). Moscow: Mashinostroeniye.

  9. Petrov, A. A. (1978). Svarka v zashchitnykh gazakh. In Svarka v mashinostroyenii [Guide] (Vol. 1) (pp. 196-258). Moscow: Mashinostroeniye.

  10. Shultse, G. (1971). Metallofizika. Moscow: Mir.

  11. Ravichandran, M., Sabarirajan, N., Sathish, T., & Saravanan, S. (2016). Effect of Welding Parameters on Mechanical Properties of Plasma Transferred Arc Welded SS 202 Plates. Applied Mechanics & Materials, 852, 324-330. doi:10.4028/www.scientific.net/amm.852.324

  12. Holt, D. L. (1970). Dislocation Cell Formation in Metals. Journal of Applied Physics, 41 (8), 3197-3201. doi:10.1063/1.1659399

  13. Vakulenko, I. O., Plitchenko, S. O., Nadezhdin, Y. L., & Kirienko, Y. D. (2017). Influence of substructure strengthening of low carbon steel оn the arcing process. Proceedings of the 9th International Conference Young Scientists Welding and related Technologies, May 23-26, 2017, Kyiv, 117-121. Kyiv: PWI NASU.

  14. Wendelstorf, J., Simon, G., Decker, I., & Wohlfahrt, H. (1997). Investigation of cathode spot behavior of atmospheric argon arcs by mathematical modeling. Proceedings of the 12th International Conference on Gas Discharges and Their Applications, 8th-12th September, 1997, Greifswald (pp. 62-65). Germany: University of Greifswald.

  15. Li, K., Wu, Z., Zhu, Y., & Liu, C. (2017). Metal transfer in submerged arc welding. Journal of Materials Processing Technology, 244, 314-319. doi:10.1016/j.jmatprotec.2017.02.004

  16. Tanaka, M., Yamamoto, K., Tashiro, S., Nakata, K., Ushio, M., Yamazaki, K., & Lowke, J. J. (2008). Metal Vapour Behaviour in Gas Tungsten Arc Thermal Plasma during Welding. Welding in the World, 52 (11-12), 82-88. doi:10.1007/bf03266686

  17. Murphy, A. B. (2015). A Perspective on Arc Welding Research: The Importance of the Arc, Unresolved Questions and Future Directions. Plasma Chemistry and Plasma Processing, 35 (3), 471-489. doi:10.1007/s11090-015-9620-2

  18. Nestor, O. H. (1962). Heat intensity and current density distributions at the anode of high current, inert gas arcs. Journal of Applied Physics, 33 (5), 1638-1648. doi:10.1063/1.1728803

  19. Hertel, M., Spille-Kohoff, A., Füssel, U., & Schnick, M. (2013). Numerical simulation of droplet detachment in pulsed gas–metal arc welding including the influence of metal vapour. Journal of Physics D: Applied Physics, 46 (2), 224003. doi:10.1088/0022-3727/46/22/224003

  20. Shirvan, A. J., Choquet, I., Nilsson, H. (2014). Modelling of electrode-arc coupling in electric arc welding. Proceedings of the 6th Intern. Swedish Production Symposium, September 16-18 2014, Göteborg. Swedish, Gothenburg: Swedish Production Academy.


Associate Prof. O. A. Chaykovskiy, Candidate of Science (Engineering) (Ukraine);
Prof. V. A. Zabludovskiy, D. Sc. (Tech.), (Ukraine) recommended this article to be published


Received: June 08, 2017

Accessed: Sept. 14, 2017

doi 10.15802/stp2017/110134 © I. O. Vakulenko, S. O. Plitchenko, N. G. Murashova, 2017